摘要
文本分类是数据挖掘领域中重要的研究分支.通过对自适应遗传算法和朴素贝叶斯分类器的研究,提出一种基于自适应遗传算法的朴素贝叶斯分类算法.将该算法应用于中文文本分类中,可以生成最优贝叶斯分类器及最优属性集合,提高分类精度.
Text categorization is an important research branch in the data mining domain. An improved naive bayesian classifier based on the genetic algorithms was proposed. It can make an effective naive bayesian classifier with excellent attributes sets in the field of text categorization.
出处
《北京工商大学学报(自然科学版)》
CAS
2009年第4期52-55,共4页
Journal of Beijing Technology and Business University:Natural Science Edition
基金
国家自然科学基金资助项目(60773112)
关键词
朴素贝叶斯分类器
遗传算法
文本分类
naive bayesian classifier
genetic algorithms
text categorization