期刊文献+

毛细管长度对热泵热水器系统动态性能的影响 被引量:11

Effects of the Capillary Length on the Dynamic Performance of an Air Source Heat Pump Water Heater
下载PDF
导出
摘要 对使用4种不同长度毛细管的空气源热泵热水器系统的动态性能进行了试验研究,分析了毛细管长度对压缩机排气温度、系统耗功率、蒸发压力、冷凝压力、制热量及系统性能系数(COP)等的影响。试验结果表明,在加热初始阶段,采用短毛细管的热泵热水器系统性能优于使用长毛细管的系统性能,而在加热后期则恰好相反。为了提高加热周期内热泵系统的平均性能系数,在加热过程中分别切换使用长度为150mm、250mm和350mm的3种毛细管,其动态性能试验表明,可大大提高热泵热水器系统的性能,其平均COP约为4.6。在整个加热阶段,压缩机的排气温度未超过90℃,保证了压缩机在一个安全稳定的条件下运行。 The dynamic performance of an air source heat pump water heater (ASHPWH) with different length of capillary tube was investigated experimentally. The effects of the capillary tube length on the discharge temperature of the compressor, input power, condensing and evaporating pressures, heating capacity and coefficient of performance (COP) were analyzed. The experimental results indicate that in the initial heating stage, the COP of the system with shorter capillary tube is larger than that with the longer one, in the late stage, the performance of the ASHPWH system with longer capillary tube is better. The heating capacity curves present a similar trend with the COP. In order to improve the average COP of the heat pump system on the heating period, the capillary tubes about 150 mm, 250 mm, and 350 mm long was changed orderly during heating process, and the dynamic performance of the ASHPWH system was measured. It is found that the average performance of the ASHPWH system is improved significantly by changing the length of the capillary tube, and the average COP is about 4.6. The refrigerant temperature from the compressor is less than 90 ℃ in the all experiments.
机构地区 天津商业大学
出处 《流体机械》 CSCD 北大核心 2009年第8期58-62,共5页 Fluid Machinery
基金 天津市应用基础研究计划:热泵/太阳能复合热水器关键技术研究(06YFJMJC05500)
关键词 热泵热水器 动态性能 毛细管 试验研究 heat pump water heater dynamic performance capillary tube experimental study
  • 相关文献

参考文献2

二级参考文献11

  • 1郭宪民,王成生,汪伟华,陈纯正.结霜工况下空气源热泵动态特性的数值模拟与实验验证[J].西安交通大学学报,2006,40(5):544-548. 被引量:33
  • 2吴业正 韩宝琪.制冷原理与设备[M].西安:西安交通大学出版社,1987..
  • 3Jie Ji,Tin-tai Chow,Gang Pei,et al.Domestic airconditioner and integrated water heater for subtropical climate[J].Applied Thermal Engineering,2003,23(5):581-592.
  • 4Jie Ji,Gang Pei,Tin-tai Chow,et al.Performance of multi-functional domestic heat-pump system[J].Applied Energy,2005,80 (3):307-326.
  • 5Kim M,Kim M S,Chung J D.Transient thermal behavior of a water heater system driven by a heat pump[J].Int J of Refrigeration 2004,27 (4):415-421.
  • 6Morrison G L,Anderson T,Behnia M.Seasonal performance rating of heat pump water heaters[J].Solar Energy,2004,76 (2):147-152.
  • 7Sakellari D,Lundqvist P.Modelling and simulation results for a domestic exhaust-air heat pump heating system[J].Int J of Refrigeration,2005,28 (7):1048-1056.
  • 8Minsung Kim,Min Soo Kim,Jae Dong Chung.Transient thermal behavior of a water heater system driven by a heater pump[J].International Journal of Refrigeration,2004,27:415-421.
  • 9岳孝方,陈沛霖.空调与制冷技术手册[M].同济大学出版社,1990.
  • 10Morrison G L,Anderson T,Behnia M.Seasonal performance rating of heat pump water heaters[C].ISES2001 Solar World Congress.

共引文献44

同被引文献73

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部