摘要
研究了扩展拉格朗日方法的人工神经网络模型,实现了其电路结构,并进行了仿真实验。基于扩展拉格朗日优化方法的SC电路具有神经网络的特征和大规模并行处理容量,其描述的函数值在很宽的范围内一般不受参数变化的影响,呈现出显著的坚固性。扩展拉格朗日优化方法具有较好的收敛性,且定位时间较短。
We have investigated artificial neural network models based on an augmented Lagrange method, and accomplished the circuit structure and the simulation experiments. SC circuits based on the augmented Lagrange method have features of neural networks and massively parallel processing capacity,the described function value generally is not affected by parameter variation in a wide range, and exhibits notable robustness. The results illustrate that applying augmented Lagrangian optimization methods have better convergence and the settling time is short.
出处
《大庆石油学院学报》
CAS
北大核心
1998年第2期35-37,共3页
Journal of Daqing Petroleum Institute
基金
大庆石油学院科研基金
关键词
开关电容
神经网络
拉格朗日
优化设计
switched capticitor, neural networks, Langrage, optimization design method, constrained condition, simulation