摘要
针对引起线性回归模型LS估计性能变坏的根本原因,提出了回归系数的广义c-K估计,将众多经典的有偏估计结合在一起,对有偏估计的改进进行了研究,分别证明了最小化均方误差和数量化矩阵K均可对Stein估计进行改进,给出了参数的最优值,为病态线性回归模型系数有偏估计的改进提供了有效途径。
Aiming at the fundamental reason for the bad performance of the LS estimator of the coefficients in the linear regression models,this paper presents the generalized c-K estimators of the coefficients,which combines various classical biased estimators into a bigger class of estimators and studies the improvement of the biased estimators.It is proved that the Stein estimators can be improved by minimizing the mean square error of the generalized c-K estimators or by specializing matrix K respectively,and the optimal values of the parameters are also obtained.The proposed approach provides an effective way to the improvement of the biased estimators of the coefficients in the linear regression models.
出处
《长江大学学报(自科版)(上旬)》
CAS
2009年第2期19-22,共4页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金
国家自然科学基金资助项目(60774029)
海军工程大学科学研究基金资助项目(HGDJJ05005
HGDJJ07007)
关键词
有偏估计
广义c-K估计
岭估计
STEIN估计
均方误差
可容许性
biased estimators
generalized c-K estimators
ridge regression estimators
Stein estimators
mean square error
admissibility