期刊文献+

线性回归模型系数有偏估计研究 被引量:1

Research on The Biased Estimators of Coefficients in Linear Regression Models
下载PDF
导出
摘要 针对引起线性回归模型LS估计性能变坏的根本原因,提出了回归系数的广义c-K估计,将众多经典的有偏估计结合在一起,对有偏估计的改进进行了研究,分别证明了最小化均方误差和数量化矩阵K均可对Stein估计进行改进,给出了参数的最优值,为病态线性回归模型系数有偏估计的改进提供了有效途径。 Aiming at the fundamental reason for the bad performance of the LS estimator of the coefficients in the linear regression models,this paper presents the generalized c-K estimators of the coefficients,which combines various classical biased estimators into a bigger class of estimators and studies the improvement of the biased estimators.It is proved that the Stein estimators can be improved by minimizing the mean square error of the generalized c-K estimators or by specializing matrix K respectively,and the optimal values of the parameters are also obtained.The proposed approach provides an effective way to the improvement of the biased estimators of the coefficients in the linear regression models.
出处 《长江大学学报(自科版)(上旬)》 CAS 2009年第2期19-22,共4页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
基金 国家自然科学基金资助项目(60774029) 海军工程大学科学研究基金资助项目(HGDJJ05005 HGDJJ07007)
关键词 有偏估计 广义c-K估计 岭估计 STEIN估计 均方误差 可容许性 biased estimators generalized c-K estimators ridge regression estimators Stein estimators mean square error admissibility
  • 相关文献

参考文献10

  • 1张建军,吴晓平.线性回归模型系数岭估计的改进研究[J].海军工程大学学报,2005,17(1):54-57. 被引量:18
  • 2张建军,吴晓平,刘敏林.线性回归模型系数Stein估计的改进研究[J].海军工程大学学报,2004,16(4):22-25. 被引量:11
  • 3Deng W S, Chu C K, Cheng M Y. A study of local ridge regression estimators [J] . Journal of Statistics Planning and Inference, 2001, 93: 225-238.
  • 4Wan A T K. On generalized ridge regression estimators under collinearity and balanced loss [J] . Applied Mathematics and Computation, 2002, 129: 455-467.
  • 5Hawkins D M, Yin X Y. A faster algorithm for ridge regression of reduced rank data[J]. Computational Statistica & Data Analysis, 2002, 40: 253-262.
  • 6Ohtani K. Inadimissibility of the Stein-rule estimator under the balanced loss function [J] . Journal of Econometrics, 1999, 88: 193-201.
  • 7Hoeral A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems [J]. Technometrics, 1970, 12: 55-67.
  • 8Stein C M. Multiple regression contributions to probability and statistics [A] . Essays in Honor of Harold Hotelling[C] . Stanford: Stanford University Press, 1960.
  • 9Hocking R R, Speed F M, Lynn M J. Aclass of estimators in linear regression [J] . Teehnometries, 1976, 18: 425-437.
  • 10凌晨飞.病态线性回归模型系数的0-k型岭估计.湖南大学学报,1990,17(1):54-57.

二级参考文献11

  • 1张建军,吴晓平,刘敏林.线性回归模型系数Stein估计的改进研究[J].海军工程大学学报,2004,16(4):22-25. 被引量:11
  • 2[1]Hoerl A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems [J]. Technometrics,1970,12:55-67.
  • 3[2]Hoerl A E, Kennard R W. Ridge regression: applications to non-orthogonal problems [J]. Technometrics,1970,12:69-82.
  • 4[3]Stein C M. Multiple regression contributions to probability and statistics [A]. Essays in Honor of Harold Hotelling [C]. Stanford: Stanford University Press,1960.
  • 5[4]Deng W S, Chu C K, Cheng M Y. A study of local ridge regression estimators [J]. Journal of Statistics Planning and Inference, 2001,93: 225- 238.
  • 6[5]Wan A T K. On generalized ridge regression estimators under collinearity and balanced loss [J]. Applied Mathematics and Computation, 2002,129: 455 - 467.
  • 7[6]Hawkins D M, Yin X Y. A faster algorithm for ridge regression of reduced rank data [J]. Computational Statistics & Data Analysis, 2002,40: 253- 262.
  • 8[7]Ohtani K. Inadmissibility of the Stein-rule estimator under the balanced loss function [J]. Journal of Econometrics, 1999,88:193-201.
  • 9[8]Hocking R R, Speed F M, Lynn M J. A class of biased estimators in linear regression [J]. Technometrics, 1976,18:425-437.
  • 10王松桂.线性模型参数估计的新进展[J].数学进展,1985,(14):193-204.

共引文献21

同被引文献7

  • 1Potthoff R F, Roy S N. A Generalized Multivariate Analysis of Vari-ance Model Useful Especially for Growth Curve Problem[J].Bimetrika, 1964 ,(51).
  • 2Rao C R. The Theory of Least Squares When The Parameters are Sto- chastic and its Application to The Analysis of Growth Curves[J].Bi- metrika, 1965, (52).
  • 3Lee J C. Prediction and Estimation of Growth Curves With Special Co- variance Structures[J].JASA, 1988, (83).
  • 4Wang S G .Commun[J].Statist-Theor.meth,1982,(14).
  • 5涂冬生,蔡红昌.一类线性有偏估计的若干性质[J].中国科学技术大学学报,1984,14(2).
  • 6郑彭丹,杨虎.生长曲线模型下的统一有偏估计[J].工程数学学报,2008,25(2):353-357. 被引量:2
  • 7杨虎.关于回归系数的泛岭估计类[J].重庆交通学院学报,1991,10(3):42-48. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部