期刊文献+

轻度混合动力轿车ISG电机特性试验研究 被引量:4

An Experimental Study on ISG Motor Characteristics of Mild Hybrid Electric Car
下载PDF
导出
摘要 开发了带全浮式ISG电机的并联轻度混合动力轿车,在Matlab/Simulink中建立了整车模型,并对发动机和ISG电机的输出转矩进行了匹配分析。分别在电机试验台和转鼓试验台上进行了ISG电机性能试验和混合动力轿车启动时的排放及油耗试验。结果表明:发动机和ISG电机的输出转矩能满足循环工况需求;在电动和发电模式下,ISG电机均有较高的输出效率;启动时发动机点火提前角从上止点后5°CA推迟到上止点后15°CA,NO_x排放量约降低24.6%;混合动力车消除了原车启动时混合气过浓现象,100km油耗约降低14.2%。 A parallel mild hybrid electric car (HEC) with floating integrated starter/generator (ISG) motor is developed, the model for HEC is built with Matlab/Simulink software, and the matching analysis between out- put torques of engine and ISG motor is performed, The performances of ISG motor and the emission and fuel con-sumption of HEC are tested on the motor test bench and the chassis dynamometer respectively. The results indicate that the output torques of the engine and the ISG motor can meet the requirements of cycle conditions; The ISG motor always has high efficiency whenever in motor or generator mode. Compared to the original HEC, the NOx emission reduces by 24. 6% when ignition angle is postponed from 5°CA ATDC to 15°CA ATDC; the phenomenon of over rich fuel - air mixture at start phase is eliminated in HEC with fuel consumption lowered by 14. 2%.
出处 《汽车工程》 EI CSCD 北大核心 2009年第8期715-718,740,共5页 Automotive Engineering
基金 国家863计划项目(2006AA11A128)资助
关键词 混合动力轿车 全浮式ISG电机 性能试验 NOX排放 油耗 hybrid electric car floating ISG motor performance test NOx emission fuel consumption
  • 相关文献

参考文献7

二级参考文献20

共引文献37

同被引文献29

  • 1李鹏,左建令.ISG型轻度混合动力汽车系统概述[J].农业装备与车辆工程,2007,45(1):3-6. 被引量:11
  • 2李伟力,李守法,谢颖,丁树业.感应电动机定转子全域温度场数值计算及相关因素敏感性分析[J].中国电机工程学报,2007,27(24):85-91. 被引量:110
  • 3Niels J. Schouten, Mutasim A Salman, Naim A Kheir. Energy management strategies for parallel hybrid vehicles using fuzzy logic[J]. Control Engineering Practice, 2003, 11(2): 171- 177.
  • 4Jorge Moreno, Micah E. Ortuzar, Juan W. Dixon. Energy- Management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Transactions On Industrial Electronics, 2006, 53(2): 614-623.
  • 5Frederick G Harmon, Andrew A Frank, Sanjay S Joshi. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network[J]. Neural Networks, 2005, 18(5/6): 772- 780.
  • 6Hyunjae Yoo, Seung-Ki Sul, Yongho Park, et al. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 108- 114.
  • 7Bailey K E, Cikanek S R, Sureshbabu N. Parallel hybrid electric vehicle torque distribution method[C]//Proceedings of the American Control Conference, Anchorage, 2002:3708 -3712.
  • 8Carter R N, Pfefferle W C, Menacherry P, et al. Laboratory evaluation of ultra-short metal monolith catalyst[C]//SAE Paper Number: 980672.
  • 9Lorenzo R, Enrico B, Fabi O. Preliminary Experimental Evalua- tion of a Four Wheel Motors, Batteries Plus Ultmcapacitors and Se- ries Hybrid Powertrain [ J ]. Applied Energy, 2011,88 ( 2 ) : 442 - 448.
  • 10Christian Kral, Habetler T G, Harley R G. Rotor Temperature Es- timation of Squirrel-cage Induction Motors by Means of a Combined Scheme of Parameter Estimation and a Thermal Equivalent Model [ J]. IEEE Transactions on Industry Applications, 2004,40 ( 4 ) : 1049-1056.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部