期刊文献+

一种约束工程设计问题的入侵性杂草优化算法(英文) 被引量:19

An invasive weed optimization algorithm for constrained engineering design problems
下载PDF
导出
摘要 提出了一种新颖的求解约束问题的群智能优化算法.该算法模拟杂草克隆、占地生长与繁殖的自然行为,具有入侵性杂草的鲁棒性、适应性和随机性等特点,算法简单而有效,具有准确的全局搜索能力.结合罚函数方法将提出的算法应用于求解工程设计优化问题,实验结果及比较表明提出的算法获得了更优的结果,同时也显示了它在求解复杂工程设计优化问题时的全局寻优能力.进一步实验与统计分析了关于参数选择对算法性能的影响,得到了有利参数选择的结论. A novel swarm intelligence optimization technique for constrained problems was presented. The algorithm was inspired from colonizing weeds, which is used to mimic the natural behavior of weeds in colonizing and occupying suitable places for growth and reproduction. It has the robustness, adaptation and randomness and is simple but effective with an accurate global search ability. Some applications of the new algorithm on constrained engineering design optimization via employing a penalty approach suggest that the experimental results from the proposed algorithm are promising. Also, experimental applications and comparisons show that the presented algorithm is a potential global search technique for solving complex engineering design optimization problems. Extensive simulations are conducted along with statistical tests to yield helpful conclusions regarding the effects of parameter settings on the algorithm's performance.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第8期885-893,共9页 JUSTC
基金 Supported partly by the Key Project of Provincial Natural Scientific Research Fund from the Educational Bureau of Anhui Province of China(KJ2007A087) National Natural Science Foundation of China(60475017) National Basic Research (973) Program of China (2004CB318108) Natural Science Foundation of Anhui Province of China (090412045,090412261X)
关键词 全局优化 入侵性杂草优化 约束设计优化 罚函数方法 智能优化 global optimization invasive weed optimization constrained design optimization penalty function approach intelligent optimization
  • 相关文献

参考文献12

  • 1Papalambros P Y. The optimization paradigm in engineering design: promises and challenges [J].Computer-Aided Design, 2002, 34 (12):939-951.
  • 2Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics Engineering, 2000, 186 (2-4): 311-338.
  • 3Herskovits J, Mappa P, Goulart E, et al. Mathematical programming models and algorithms for engineering design optimization[J]. Computer Methods in Applied Mechanics Engineering, 2005, 194 (30- 33): 3 244-3 288.
  • 4Lee K S, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice[J].Computer Methods in Applied Mechanics Engineering, 2005, 194 (36-38): 3 902-3 933.
  • 5Hu X H, Eberhart R C, Shi Y H. Engineering optimization with particle swarrn[C]// Proceedings of the 2003 IEEE on Swarm Intelligence Symposium. Indianapolis.. IEEE Neural Networks Society, 2003 : 53-57.
  • 6Coelho L D S, Mariani V C. Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization [J]. Expert Systems with Applications, 2008, 34(3): 1 905-1 913.
  • 7Mehrabian A R, Lucas C. A novel numerical optimization algorithm inspired from weed colonization[J]. Ecological Informatics, 2006, 1(4): 355-366.
  • 8Jarchi S, Rashed-Mehassel J, Neshati M H, et al. A dual resonance three segment rectangular dielectric resonator antenna[C]// PIER Proceedings. Prague, Czech Republic: IEEE Press, 2007: 516-520.
  • 9ZhangX C, Wang Y L, Cui O Z, et al. SIWO: a hybrid algorithm combined with the conventional SCE and novel IWO [J]. Journal of Computational and Theoretical Nanoscience, 2007, 4(7/8):1 316-1 323.
  • 10Kuri-Morales A F, Guti rrez-Gar J. Penalty function methods for constrained optimization with genetic algorithms: a statistical analysis[C]//Proceedings 6th European Congress on Intelligent Techniques &Soft Computing. 1998: 518-522.

同被引文献156

引证文献19

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部