期刊文献+

基于时间段的时序规则发现 被引量:2

Mining association rules in interval-based temporal sequences
下载PDF
导出
摘要 提出了一个新的基于时间段的频繁闭模式的挖掘算法,采用时间段的概念,利用频繁闭模式的特点,生成相应的时序规则。算法通过使用闭模式的性质进行剪枝优化,不生成冗余的候选序列,降低了时序规则发现的时间与空间复杂度,提高了效率。 A new algorithm was proposed to find association rules in interval-based sequences, which was based on the concept of interval time series and used the properties of frequent closed patterns. By the properties of frequent closed patterns, the algorithm can avoid generating the redundancy candidate sequences, thus decreases the time and space complexity and improves the efficiency of the algorithm.
出处 《通信学报》 EI CSCD 北大核心 2009年第8期112-115,共4页 Journal on Communications
基金 国家自然科学基金资助项目(60402011 10761007) 国家十一五科技支撑计划基金资助项目(2006BAH03B05) 国家高技术研究发展计划("863"计划)基金资助项目(2009AA04Z136)~~
关键词 数据挖掘 时间序列 时序频繁模式 关联规则 data mining time series temporal frequent pattern association rule
  • 相关文献

参考文献11

  • 1AGRAWAL R, IMIELINSKI T T, SWAMI A. Mining association rules between sets of items in large databases[A], Proceedings of the ACM-SIGMOD 1993 Internetional Conference on Management of Data[C]. 1993. 207-216.
  • 2LIN M Y, LEE S Y. Fast discovery of sequential patterns by memory indexing[A]. Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2002)[C]. Aix-en-Provence, France, 2002. 150-160.
  • 3PEI J, HAN J, MORTAZAVI-ASL B, et al. Prefixspan: Mining sequential patterns e.ciently by pre.xprojected pattern growth[A]. Proceedings of the 2001 International Conference on Data Engineering (ICDE'01)[C]. Heidelberg, Germany, 2001. 215-224.
  • 4WANG J Y, HAN J. BIDE: efficient mining of frequent closed sequences[A]. Proc 2004 Int Conf Data Engineering (ICDE'04)[C]. 2004. 79-91.
  • 5LI Y, NING P, WANG X S, et al. Discovering calendar-based temporal association rules[A]. Proceedings of the 8th International Symposium on Temporal Representation and Reasoning[C]. 2001.111-118.
  • 6OZDEN B, RAMASWAMY S, SILBERSCHATZ A. Cyclic association rules[A]. Proceedings of the 14th International Conference on Data Engineering[C]. 1998. 412-421.
  • 7KAM P S, FU A W C. Discovering temporal patterns for interval-based events[A]. Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2000)[C]. London, UK, 2000. 317-326.
  • 8AGRAWAL R, SRIKANT R. Mining sequential patterns[A], 11th International Conf on Data Engineering[C]. 1995.3-14.
  • 9WINARKO E, RODDICK J F. Discovering richer temporal association rules from interval-based data[J]. Data Warehousing and Knowledge Discovery, 2005.315-325.
  • 10BOUANDAS K, OSMANI A. Mining association rules in temporal sequences[A]. Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining(CIDM 2007)[C]. 2007.610-615.

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部