期刊文献+

动态随机存储器栅极侧壁硅化钨残留的去除工艺

Integrated Cleaning Process for WSi_x Gate Sidewall Residue of DRAM
下载PDF
导出
摘要 动态随机存储器栅极侧壁硅化钨残留造成的短路成为制约提高产品良率及可靠性的瓶颈.为此,采用X射线荧光光谱(XRF)、扫描电镜(SEM)等检测分析手段优化硅/钨原子组成比为2.45.透射电镜(TEM)及电性参数测试结果表明,经30s、1000℃快速热处理可获得方块阻值为12Ω/cm2的硅化钨,且可刻蚀性能好.在硅化钨刻蚀前利用电子束扫描发现,15min的氢氟酸和10min浓硫酸与过氧化氢混合溶液(SPM)在300W超声波条件下的新湿法清洗工艺,能去除84.7%的表面微粒及残留聚合物.整合上述优化工艺可以将硅化钨残留造成的65nm动态随机存储器芯片失效率由31.3%降到1.9%,为研究下一代产品提供有效借鉴. Dynamic random access memory (DRAM) suffers from the bridge issue due to the WSix residue on gate sidewall, which is the bottleneck to enhancing the product's yield and reliability. Thus, the Si/W atomic ratio of WSix is optimized to 2.45 by using X-ray fluorescence (XRF) and scanning electron microscope (SEM). Analysis by transmission electron microscopy (TEM) and electronic testing shows that after 30 s rapid thermal annealing(RTA) at 1 000 ℃, the sheet resistance of WSi2 45 film is 12 Ω/cm^2 and can be easily etched off . Electron beam scanning before the WSix film etching shows that about 84.7% of the surface particles and polymer residue can be effectively removed through a novel wet cleaning process by 15 min HF and 10 min sulfuric-peroxide mixture (SPM) with 300 W megasonic. With these integrated optimized processes, the yield loss due to the WSix residue on the 65 nm DRAM products can be reduced from the original 31.3% to 1.9% ,which also serves as a good guideline for future advanced DRAM process development.
出处 《纳米技术与精密工程》 EI CAS CSCD 2009年第4期305-309,共5页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(50371033) 高等学校博士学科点专项科研基金资助项目(20040674009) 中芯国际集成电路制造有限公司及日本富士通微电子株式会社企业资助项目
关键词 硅化钨 侧壁残留 漏电流 快速热处理 湿法清洗 动态随机存储器 WSix sidewall residue leakage current rapid thermal annealing(RTA) wet clean dynamic random access memory(DRAM)
  • 相关文献

参考文献11

  • 1彭可,易茂中,冉丽萍.MoSi_2和WSi_2的价电子结构及性能分析[J].金属学报,2006,42(11):1125-1129. 被引量:6
  • 2庄达人.VLSI制造技术[M].台湾:高立罔书有限公司,2003:273-274.
  • 3郭正邦.互补金属氧化物半导体数字集成电路[M].4版.台湾:希尔国际股份有限公司,1999:289-299.
  • 4Chan B W, Chi Min-hwa, Liou Y H. Notch elimination in polycide gate stack etching for advanced DRAM technology [ C ]// Semiconductor Manufacturing Technology Workshop, IEEE the Institute of Electrical alut Electronics Engineers. Hsinchu, Taiwan, China, 2000: 133-139.
  • 5Deuk Ko Yong, Gon Chun Hui, Lee Jing Hyuk, et al. EPD time delay as WSix stack down gate etching in DPS+ chamber [ C ]//1EEE the 7th Korea-Russia International Symposium. Chungnam, South Korea, 2003: 212-216.
  • 6Rao Vivek, Morgan Jennifer, Barden W, et al. Tungsten silicide gate stack optimization for 0. 17 μm DRAM technology [ C]//IEEE Advanced Semiconductor Manufacturing Conference and Workshop. Boston, MA, USA, 2000: 340-346.
  • 7Gambino J P, Weybright M, Fahermeier J, et al. Thermal stability of WSi2 polycide structures for 1Gbit DRAMs [ C ]// IEEE Interconnect Technology Conference. NY, USA, 1998 : 259-261.
  • 8Donggun Park, Jin Son Nak, Kim J Y, et al. Effects of RTA and WSix-polycide gate processes on MOSFET reliability for giga-bit scale DRAMs [ C ]//IEEE Integrated Reliability Workshop Final Report. Lake Tahoe Canada, 2000: 125- 128.
  • 9Lee Cheol In, Choi Hyun Sik,Kwon H Y, et al. GOI properties of W-polycide formed by DCS processing[ C]// IEEE Properties and Applications of Dielectric Materials. Seoul, Korea, 1997: 356-359.
  • 10Widiez J, Vinet M, Garros B, et al. Impact of WSix metal gate stoichiometry on fully depleted SO1 MOSFETs electrical properties [ C ]// VLSI Technology Systems and Applications. Hsinchu, Taiwan, China, 2006: 1-2.

二级参考文献21

  • 1陈舜麟,顾强,王天民.Co_3Ti与CoTi的晶体结构与结合能的计算及其脆性[J].物理学报,1995,44(6):936-942. 被引量:10
  • 2徐万东 张瑞林 余瑞璜 A辑.过渡金属晶体结合能的计算[J].中国科学,1988,(3):323-323.
  • 3Sharif A A,Misra A,Petrovic J J,Mitchell T E.Intermetallics,2001; 9:869
  • 4Petrovic J J.Intermetallics,2000; 8:1175
  • 5Sharif A A,Misra A,Petrovic J J,Mitchell T E.Scr Mater,2001; 44:879
  • 6Petrovic J J,Vasudevan A K.Mater Sci Erg,1999; A261:1
  • 7Petrovic J J,Honnell R E.Ceram Eng Sci Proc,1990; 11:734
  • 8Zhang H A,Chen P,Wang M J,Liu X Y.Rare Met,2002;(4):304
  • 9Bhattacharyya B K,Bylander D M,Kleinman L.PhysRev,1985; 32B:7973
  • 10Zachariasen W.Physik Chem,1927; 128:39

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部