期刊文献+

步态特征精密提取与身份认证(英文) 被引量:2

Precision Extraction of Gait Feature and Identity Authentication
下载PDF
导出
摘要 为更有效地检测人体目标,弥补单一模型在步态特征提取中的不足,提出了基于双模型的步态特征精密提取方法,且构建了基于步态特征进行身份认证的门禁监控实验平台.首先从摄像机捕获步态视频输入计算机,发现人体目标后对其进行检测与跟踪;然后分割人体轮廓并将其规格化叠加处理获取步态特征图;为精确提取步态特征,将人体整体模型与简化模型相结合,提取步态参数作为识别参量输入支持向量机(SVM)进行分类识别,正确识别率(PCR)为77%~80%.结果表明该方法有助于步态特征的精密提取,且实验平台能较好地自动监控人体目标并进行身份认证. To better detect human body and remedy defects of feature extraction with a single model, a method for precision extraction of gait feature based on double model was proposed to obtain gait parameters, and an access monitoring platform for identity authentication was presented. Firstly, the gait video captured by camera was input to the computer to detect target and monitor the access. Secondly, body silhouettes were extracted and normalized to obtain the gait feature image. Thirdly, the integral model was combined with the simplified model to extract gait parameters. Finally, the technique of support vector machines was presented for identity authentication. The probability of correct recognition (PCR) has achieved 77% --80%. This method based on integral model and simplified model is helpful for precision extraction of gait feature. The platform can automatically detect human body and provide a better way for identity authentication.
出处 《纳米技术与精密工程》 EI CAS CSCD 2009年第4期319-323,共5页 Nanotechnology and Precision Engineering
基金 国家高技术研究发展计划(863)项目(2007AA04Z236) 天津市科技支撑计划重点项目(07ZCKFSF01300) 中国博士后科学基金资助项目(20080430732)
关键词 步态特征 门禁监控 身份认证 支持向量机 gait feature access monitoring identity authentication support vector machines
  • 相关文献

参考文献3

二级参考文献34

  • 1韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31(2):48-49. 被引量:21
  • 2Vladimir N Vapnik.An overview of statistical learning theory[J].IEEE Trans.On Neural Network,1999,10(5):988-999.
  • 3Christopher J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2:121-167.
  • 4Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995:1-15.
  • 5S R Gunn.Support Vector Machines for Classification and Regression[R].Technical Report,Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 6M O Stitson,J A E Weston,A Gammerman,et al.Theory of Support Vector Machines.Technical Report[R],CSD-TR-96-17.Department of Computer Science Egham,Surrey TW20 0EX,England,Royal Holloway University of London,December 31,1996.
  • 7V Vapnik,A Y Chervoknenkis.On the uniform convergence of relative frequencies events to their probabilities[J].Theory of Probable and Its Application,1971,16(2):263-280.
  • 8Murase H,Sakai R.Moving object recognition in eigenspace representation:Gait analysis and lip reading[J].Pattern Recognition Letters,1996,17:155-162.
  • 9Little J,Boyd J.Recognizing people by their gait:The shape of motion[J].Journal of Computer Vision Research,1998,1(2):2-32.
  • 10Shutler J,Nixon M,Harris C.Statistical gait recognition via temporal moments[C]// Proc IEEE Southwest Symposium on Image Analysis and Interpretation.Texas,USA,2000:291-295.

共引文献33

同被引文献16

  • 1薛召军,赵鹏飞,万柏坤,李轶,明东,靳世久.红外热成像在步态识别中的应用[J].光电子.激光,2009,20(3):402-405. 被引量:8
  • 2代雪晶,汤澄清.生物特征识别技术[J].中国公共安全,2004,0(11):126-128. 被引量:1
  • 3张华煜,邢丽萍.基于核函数的支持向量机分类方法[J].电脑开发与应用,2005,18(7):26-27. 被引量:3
  • 4薛召军,李佳,明东,万柏坤.基于支持向量机的步态识别新方法[J].天津大学学报,2007,40(1):78-82. 被引量:15
  • 5张青.传统身份鉴别技术与生物识别技术的比较[EB/OL]. http ://www. safeonline, com. cn/cn/NewsText/News 4674. htm ,2006-06-19.
  • 6Dawson M R. Gait Recognition [ EB/OL ]. http ://www3. im- perial, ac. uk/pls/portallive/docs/1/18619755. PDF, 2002- 06-30.
  • 7Bazin A I, Nixon M S. Gait verification using probabilistic methods [ C ] // The 7th IEEE Workshop on Applications of Computer Vision. Breckenridge, CO, USA ,2005:60-65.
  • 8Fang J S, Hao Q, Brady D J, et al. Path-dependent human identification using a pyroelectric infrared sensor and Fresnel lens arrays[J]. Optics Express,2006,14(2) :609-624.
  • 9Gopinathan U, Brady D J, Pitsianis N P. Coded apertures for efficient pyroelectric motion tracking [ J ]. Optics Express, 2003,11 (18) :2142-2152.
  • 10Fang J S, Hao Q, Brady D J. A pyroelectric infrared biometricsystem for real-time walker recognition by use of a maximum likelihood principal components estimation (MLPCE) meth- od[ J]. Optics Express ,2007,15 (6) :3271-3284.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部