期刊文献+

氧化铝种分过程粒度分布的动态模型 被引量:3

Particle distribution dynamic model of gibbsite precipitation process during alumina production
下载PDF
导出
摘要 将实验室实验、工业试验与数值仿真(计算)方法相结合,以种分过程中的动力学规律和粒数衡算为基础,以MATLAB/Simulink软件为主要开发工具,根据种分过程的粒度变化特性,以MSMPR结晶器为对象,建立种分槽晶体成核、生长和附聚相结合的粒度衡算模型。根据不同温度下的实验数据,利用矩量法对种分过程的重要参数——附聚核β和成核速率RN进行求解。计算结果表明:附聚核在70℃左右达到最大值,成核速率则一直随着温度的升高而降低;用MATLAB/Simulink软件求解粒度模型,对不同工艺条件下种分过程的粒度分布进行预测,将预测结果与工业试验数据进行比较,相对误差低于10%。 The laboratory experiment, industrial test and numerical simulation of the precipitation were synchronously applied. Based on the dynamics law and population balance, with the full characteristics of the particle size variation of the MSMPR gibbsite precipitation process, the combined dynamic model of crystal's nucleation, growth and agglomeration was developed with MATLAB/Simulink to confirm the value of the important parameters ,8 and RN in different experimental conditions. The results show that β is maximal at about 70 ℃ and RN decreases with the increase of temperature. And the particle size distribution is predicted with the dynamic model. The relative error between the model's prediction and the experimental test data is less than 10%.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期879-883,共5页 Journal of Central South University:Science and Technology
基金 中国博士后基金资助项目(291054)
关键词 氧化铝 种分过程 粒度 模型 alumina gibbsite precipitation process particle model
  • 相关文献

参考文献9

二级参考文献83

共引文献49

同被引文献22

  • 1周秋生,李小斌,彭志宏,刘桂华,赵清杰,吴洁.高浓度铝酸钠溶液晶种分解动力学[J].中南大学学报(自然科学版),2004,35(4):557-561. 被引量:11
  • 2张江峰,李旺兴,尹周澜,陈启元.铝酸钠溶液晶种分解附聚过程主要影响因素研究[J].轻金属,2004(9):17-19. 被引量:16
  • 3康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2006.
  • 4Misra C, White E T. Kinetics of crystallization of aluminium trihydroxide from seeded caustic aluminate solutions[J]. Chemical Engineering Progress Symposium Serial, 1971, 67(110): 53-65.
  • 5Harvey R L. Simple reagent techniques to improve alumina processing[J]. Light Metals, 1990: 141-145.
  • 6Groneweg P. Development of an Al(OH)3 crystallization model based on population balance[D]. Canada: McMaster University, 1980: 5-20.
  • 7Crama W J, Visser J. Modeling and computer simulation of alumina trihydrate precipitation[C]//Proceedings of 123rd Annual Meeting on Light Metals, San R.rancisco, 1984: 73.
  • 8Audet D R, Larocque J E. Development of a model for prediction of productivity of alumina hydrate precipitation[C]// Proceedings of AIME 118 Annual Meeting, Warrendale, PA, 1988: 21.
  • 9Audet D R, Larocque J E. Hyprod simulation: Optimization of productivity and quality of Bayer alumina preciptation system[C]//Proceedings of 121st TMS Annual Meeting, Warrendale, PA, 1992: 1315.
  • 10Kiranoudis C T, Voras N G, Kritikos T, et al. Object-oriented simulation of hydrometllurgical processes. Part II. Application to the Bayer process[J]. Metal Mater Trans B, 1997: 28-785.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部