摘要
考虑两类时间空间分数阶对流-弥散方程,它们是由传统的对流-弥散方程推广而来(时间一阶导数用μ∈(0,1]阶Caputo导数代替,空间一阶、二阶导数分别用α∈(0,1]和β∈(1,2]阶Riesz或Caputo导数代替).它们的Cauchy问题的基本解可以通过Laplace-Fourier变换得出,其表达式可以通过适当的变形求得,并证明了其空间概率密度的性质.
In this paper, we discuss two kinds of the time-space fractional advection-dispersion equa- tions. They are generalizations of the classical advection-dispersion equations,in which the first-order time derivatives are replaced with Caputo derivatives of order/zE (0,1] ,while the first- and two-order space de- rivatives are replaced with Reise or Caputo derivatives of order a E (0,1] and fie (1,2]. By the Laplace- Fourier transformation,we derive the fundamental solutions for theirs Cauchy problems. The appropriate structures for the Green functions are provided. We further prove that the Green functions are the spatial probability density functions.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2009年第4期392-396,共5页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金数学天元基金资助项目(10726061)
国家教育部高等学校博士点基金新教师基金资助项目(20070561040)
广东省自然科学基金资助项目(07300823)