期刊文献+

时序环境中概率因果关系的定性表示及融合 被引量:2

Qualitative representation and fusion of probabilistic causalities in time-series environments
原文传递
导出
摘要 时序数据库各时间片的数据中蕴含着概率因果关系,多时间片概率因果关系的融合可为时态环境中因果关系的综合分析、全局考虑、决策支持及趋势预测等提供科学的依据,该文研究多时间片内同一变量集上概率因果关系的定性表示及融合.首先将各时间片的贝叶斯网(BN)抽象为定性概率网(QPN),以定性的方式高效、简洁地表示各时间片数据中蕴含的概率因果关系.然后,基于BN的推理方法及时序环境中的马尔可夫假设,构造多时间片QPN的一致表示,从而解决各时间片QPN的结构融合问题.基于证据叠加和QPN中定性影响加权的基本思想,给出基于区间值的QPN定性影响量化及相应的定性影响叠加方法,从而解决各时间片QPN的参数融合问题.实验结果表明所提出方法的可行性. Probabilistic causal relationships are implied in the data of various time slices in time series databases. The fusion result of probabilistic causalities among multiple slices cbuld provide with the reasonable guideline for decision making, knowledge fusion, analysis, prediction of economic trends, etc. In this paper, we focus on the qualitative representation and fusion of probabilistic causalities on the same set of variables in multiple time slices. To represent the causalities efficiently and succinctly, we first construct QPNs abstracted from corresponding BNs in different time slices. Further,based on the reasoning approach of BN and the Markov assumption in time - series environments,we obtain the consistent representation of various network structures,and then propose the method for fusing the graphical structures of concerned QPNs. Consequently,we associate strengths to qualitative influences by interval values derived from BNs' probability parameters. Then we give a superposition method for fusing qualitative parameters of time - series QPNs. Experimental results verify the feasibility of our methods.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期455-462,共8页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(60763007) 云南省应用基础研究资助项目(2008CD083) 云南省教育厅科研基金资助项目(08Y0023) 云南大学中青年骨干教师培养计划资助
关键词 时序 定性概率网 融合 区间值 叠加 time - series qualitative probabilistic network fusion interval value superposition
  • 相关文献

参考文献15

  • 1PEARL J. Probabilistic reasoning in intelligent system:networks of plausible inference [ M ]. San Mateo CA: Morgan Kaufmann Publishers, INC. , 1988.
  • 2PEARL J. Propagation and structuring in belief networks [ J ]. Artificial Intelligence, 1986,29 (3) : 241-288.
  • 3HECKERMAN D, WELLMAN M P. Bayesian networks [ J ]. Communications of ACM, 1995,38 ( 3 ) : 27-30.
  • 4CHENG J. BN power constructor [ EB/OL]. [ 2008 - 07 - 11 ]. http ://www. cs. ualberta, ca/- jcheng/bnpc, htm.
  • 5Norsys Software Cory. Netica[ EB/OL]. [ 2008 -07 -11 ]. http ://www. norsys, com/netica, html.
  • 6WELLMAN M P. Fundamental concepts of qualitative probabilistic networks [ J ]. Artificial Intelligence, Elsevier Science Inc. , 1990,44 : 257 -303.
  • 7WELLMAN M P. Graphical inference in qualitative probabilistic networks[ J ]. Networks, 1990,20 (5) :687-701.
  • 8DRUZDZEL M J, HENRION M. Efficient reasoning in qualitative probabilistic networks [ C ]//Proc of the 11 th National Conf on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1993,548-553.
  • 9LIU W Y, YUE K, LIU S X, et al. Qualitative - probabilistic - network - based modeling of temporal causalities and its application to feedback loop identification[ J]. Information Sciences,2008,178 (7) :1 803-1 824.
  • 10RENLLIJ S. Qualitative approaches to quantifying probabilistic networks [ D ]. Ph. D Thesis, Institute for Information and Computing Sciences, Utrecht University, the Netherlands,2001.

二级参考文献3

  • 1Liu Weiyi,Fuzzy Sets and Systems,1993年,59卷,2期,173页
  • 2He X G,计算机学报,1989年,12卷,10期,757页
  • 3Hou Zhongxiong,模糊数学及其应用,1989年

共引文献2

同被引文献14

  • 1李维华,刘惟一,张忠玉,郭祥文,张燕峰.基于扩展关系模型的多Bayesian网依赖结构的合并[J].计算机科学,2004,31(7):192-195. 被引量:1
  • 2郑恒,吴祈宗,黄锴.基于半定性贝叶斯网络的建模方法研究[J].科学技术与工程,2007,7(1):12-17. 被引量:2
  • 3胡笑旋,杨善林,马溪骏.带权重的定性贝叶斯网[J].小型微型计算机系统,2007,28(2):283-286. 被引量:4
  • 4MATZKEVICH I, ABRAMSON B. The topological fusion of Bayes nets [ C]// Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kanfmann, 1992:191 - 198.
  • 5SAGRADO J, MORAL S. Qualitative combination of Bayesian networks [J]. International Journal of Intelligent Systems, 2003, 18 (2) : 237 - 249.
  • 6LU Y L, LIAO S Z. Integration of multiple qualitative probabilistic networks based on probabilistic rough sets [ C] //Proceedings of the 2010 International Conference on Computer Application and System Modeling. Chengdu: IEEE, 2010:454-458.
  • 7PAWLAK Z. Rough sets [ J]. International Journal of Computer and Information Sciences, 1982, 11 (5) : 341 - 356.
  • 8WELLMAN M P. Fundamental concepts of qualitative probabilistic networks [ J]. Artificial Intelligence, 1990, 44(3) : 257 - 303.
  • 9KWISTHOUTA J, TEL G. Complexity results for enhanced qualitative probabilistic networks [ J]. International Journal of Approximate Reasoning, 2008, 48(3):879-888.
  • 10YUE K, YAO Y, LI J. Qualitative probabilistic networks with reduced ambiguities [ J]. Applied Intelligence, 2010, 33(2): 159 - 178.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部