期刊文献+

支持向量机应用于大气污染物时间序列预测 被引量:2

Support Vector Machine Applied to Air Pollutant Time Series Forecasting
下载PDF
导出
摘要 阐述了支持向量机应用于大气污染物时间序列预测的具体方法,建立了大气污染物时间序列的支持向量机预测模型。该方法将支持向量机应用于大气污染物浓度预测:首先通过选择合适的信息量准则来确定模型阶数;而后通过实验的方法选择参数从而形成支持向量机的训练样本集,在此基础上建立了基于支持向量机的时间序列大气污染预测模型。实例表明,无论是在仿真过程还是在预测过程,支持向量机都具有很高的预测精度。因此,采用支持向量机方法对大气污染物时间序列进行预测分析是可行的。 The specific method of support vector machine (SVM) applied to air pollutant time series forecasting is expounded and a SVM prediction model of the air pollutant time series is constructed. SVM used in the concentration prediction of air pollutant by the method, first selecting suitable information criteria to determine the order of the model, then choosing parameters by experiment to form the training sample set of SVM, and then the time series air pollution prediction model has been created based on SVM. The example shows that the prediction accuracy of SVM is high whatever simulation or forecasting process. So using SVM to predict and analyze the air pollutant time series is feasible.
出处 《计算机时代》 2009年第9期1-3,共3页 Computer Era
基金 陕西省教育厅专项科研计划项目(07JK312)
关键词 时间序列 支持向量机 核函数 大气污染预测 time series support vector machine kernel function air pollution prediction
  • 相关文献

参考文献7

二级参考文献38

  • 1王茂新 王瑞仙 等.大气污染浓度预测技术手册[M].北京:气象出版社,1992..
  • 2[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 3[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 4[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 5[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 6[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 7[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 8[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 9[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 10[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.

共引文献2380

同被引文献23

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部