期刊文献+

基于时态逻辑的多时间序列挖掘模型 被引量:2

A new model for mining multiple time series based on temporal logic
下载PDF
导出
摘要 为了从多时间序列之间发现的定性的时态相关模式可而更全面的理解和把握系统的演化特性,提出了一种基于时态逻辑的多时间序列挖掘模型。它首先将多时间序列转化为多事件序列,然后将预处理后的多事件序列利用区间时态逻辑(ITL)关系子集来定义多事件序列中事件间的时态相关模式。其次进行多状态序列融合和局部时态观测序列的生成,之后采用频繁模式挖掘算法发现多时间序列的频繁时序模式。该模型有助于解决时间序列挖掘所面临的若干挑战和难题,有助于扩展现有时间序列挖掘系统的功能,从而指导时间序列等复杂类型数据的知识发现过程。实验结果表明了该模型及算法的有效性和优越性。 In order to extract connotative pattern for scientific decision-making, identify the qualitative temporal pattems from the multiple time series and have a comprehensive understanding on the evolution of the system, a new mining model for multiple time series is proposed based on temporal logic. Firstly, the multiple time series are transformed into multiple event sequences, and then temporal relative pattern in multiple event sequences is defined using a subset of ITL relation. Secondly, the multiple state sequences are synthesized into one state sequence, and then the frequency pattern mining algorithm is applied to discover the frequency time series in multiple time series. The proposed model is useful in time series mining, and expends the capacity of existing time series mining system. The case study shows that the proposed model is valid and has advantages.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第4期604-607,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(60675030)
关键词 时态逻辑 多时间序列 数据挖掘 temporal logic multiple time series data mining
  • 相关文献

参考文献9

  • 1Fayyad U, Piatetsky S G, Smyth P. Knowledge Discovery and Data Mining Towards a Unifying Framework[C]//Proceedings of the Second Intemational Conferance on Knowledge Discovery and Data Mining, Oregon, Portland, AAAI Press, 1996: 82-88.
  • 2高知新.非线性时间序列的重构及预测[J].辽宁工程技术大学学报(自然科学版),2004,23(1):138-140. 被引量:3
  • 3Das G, Lin K, Mannila H, et al. Rule Discovery from Time Series[C]//Proeeedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, U.S.A., 1998: 16-22.
  • 4Mantilla H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences[J]. Data Mining and Knowledge Discovery, 1997,1(3): 259-289.
  • 5Oates T, Cohen P R. Searching for structure in multiple streams of data[C]//Proceedings of the 13th International Conference on Machine Learning. Morgan Kaufinann Publishers, 1996: 346-354.
  • 6李斌,谭立湘,解光军,李海鹰,庄镇泉.非同步多时间序列中频繁模式的发现算法[J].软件学报,2002,13(3):410-416. 被引量:8
  • 7潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 8Allen J. Maintaining knowledge about temporal intervals[J]. Communications oftheACM, 1983, 26(11): 832-843.
  • 9邓立国,杨殊,边丽英.基于模糊集的模糊时态映射模型[J].辽宁工程技术大学学报(自然科学版),2008,27(2):315-317. 被引量:1

二级参考文献14

  • 1Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 2王家廞.具有不确定性的时态模型[J].计算机科学,1995,22(6):49-54. 被引量:8
  • 3侯振挺 吴今培.TAR模型建模的新策略[J].科学探索学报,1987,(7):13-22.
  • 4邓立国,马宗民,张刚.基于模糊集的不精确时态关系建模[J].东北大学学报(自然科学版),2007,28(10):1462-1464. 被引量:5
  • 5Allen J. Maintaining knowledge about temporal intervals[J]. Communications of the Associatio for Computing Machinery, 1983,26(11):832-843.
  • 6Nagypal G., Motik B.A fuzzy model for representing uncertain, subjective and vague temporal knowledge in ontologies[C]//Proc, of the Int. Conf. on Ontologies, Databases and Applications of Semantics.LNCS 2888, Springer-Verlag, 2003:906-923.
  • 7Dubois D, Prade H. Processing Fuzzy Tempor -al Knowledge[J].IEEE Transactions on Systems. Man and Cybernetics, 1989,19(4):729-744.
  • 8Gradia S,Nair S,Poon Y C.Incomplete In-formation in Relational Temporal Databases[C]//Proc. Intl. Conf. on Very Large Database,1992.
  • 9Jensen, C S, Mark L, Roussopoulos N. Incremental Implementation Model for ReLational Databases with Transaction Time[J]. IEEE Transactons on Knowledge and Data Engineering,1991,3(4):461-473.
  • 10Lakshmanan V S, Sadri F. Modeling Uncertainty in Deductive Databases[C]//Proc. Int. Conf. On Database Expert Systems and Applications.(DEXA'94),Springer 1994, 856:724-733.

共引文献48

同被引文献26

  • 1李跃,张华.时态数据库理论研究[J].大庆师范学院学报,2006,26(5):101-105. 被引量:3
  • 2Toivonen R, Onnela J P Saramaki J, et al. A model for social networks[J]. Physica A:Statistical and Theoretical Physics,2006(371): 851-860.
  • 3Newman M E J,Park J.Why social network are different from other types of networks[J]. Physical Review E, 2003(68): 036-122.
  • 4Yang S H, Long B, Smola A. Proceedings of the 20th international conference on World Wide Web (WWW' 11) [C].Hyderabad India: ACM Press, 2011:537-546.
  • 5Leskovec J, McGlohon M, Faloutsos C. Proceedings of the SIAM international conference on data mining[C].New York USA: ACM Press, 2007:551-556.
  • 6Gruhl D, Guha R, Liben Nowell D, et al. Proceedings of the 13th international conference on world wide web [C].New York USA: ACM Press, 2004:491-501.
  • 7Adar E, Zhang L, Adamic LA, et al. Proceedings of the workshop on the weblogging ecosystem, the 13th international conference on world wide web [C].New York USA: ACM Press, 2004:409-419.
  • 8Baumgart I. Heep B. Krause S. The 10th IEEE global internet symposium in conjunction [C]//.Anchorage AK: IEEE CPS, 2007:79-84.
  • 9李争艳,李贞双.时态数据库浅析[J].科技信息,2008,(25):79-80.
  • 10Zar Linn, Khin Haymar Saw Hla. Temporal Database Queries for Recommender System using Temporal Logic [J].Micro-NanoMechatronics and Human Science, 2006, 25(12):79-86.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部