期刊文献+

一类线性模糊常微分方程的模糊结构元解法 被引量:2

Solution algorithm of linear fuzzy ordinary differential equations using fuzzy structuring element
下载PDF
导出
摘要 基于扩张原理建立起来的模糊值函数以及微积分在表述上存在着遍历性的困难,使得模糊微分方程求解变得异常困难,模糊结构元方法有效地解决了模糊数和模糊值函数以及微积分表述上的困难。利用模糊值函数分析学的模糊结构元表述理论,讨论了模糊常微分方程求解的模糊结构元方法,对于一类线性模糊常微分方程的通解给出了基于模糊结构元的表达形式,并结合实例进行说明。结论表明,模糊结构元方法简化了计算,在求解一类线性模糊微分方程时显得简单,同时也能给出解的解析表达形式,说明了模糊结构元方法是克服模糊微分方程求解困难的一个有效的工具。 There are some difficulties in expressing calculus and fuzzy-value functions which is based on fuzzy extension principle. Also it becomes difficult to obtain a solution for fuzzy differential equations. However, fuzzy structured element can be used to denote the calculus of fttzzy-value function, and avoid ergodic problem. In this paper, a fuzzy structured element solution algorithm for linear fuzzy ordinary differential equations is investigated based on the theory of fuzzy structured element in fuzzy-valued function and calculus. The paper presents the expression of the general solution of linear fuzzy ordinary differential equations. The case study demonstrates that the fuzzy structured element method simplifies the calculation of fuzzy differential equation. In particular, the solution is analytical. It concludes that the fuzzy structured element method is an effective mean for solving the fuzzy differential equation.
作者 郭嗣琮 王磊
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第4期668-671,共4页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省教育厅高等学校科学研究基金资助项目(20060377) 辽宁工程技术大学校基金资助项目(07A201)
关键词 模糊微分方程 模糊结构元 模糊值函数 fuzzy differential equation, fuzzy structuring element, fuzzy-valued function
  • 相关文献

参考文献10

  • 1Zhang Yue, Wang Guangyuan,Liu Sufang. Frequency domain methods for the solutions of N-order fuzzy differential equation[J]. Fuzzy Sets and Systems 1998,94(1):45-49.
  • 2Zhang Yue, Wang Guangyuan. Time domain methods for the solutions of N-order fuzzy differential equation[J].Fuzzy Se'ts and Systems 1998,94(1):77-92.
  • 3J.J Buckley, T.Feuring,. Fuzzy differential equation[J], Fuzzy Sets and gystems 2000,110(1):43-54.
  • 4J.J Buckley, T.Feuring. Fuzzy initial value problem for Nth-order liner differential equations[J] Sets and Systems, 2001,121(2):247-255.
  • 5郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 6王磊,郭嗣琮.n阶线性方程模糊初值问题的模糊结构元解法[J].辽宁工程技术大学学报(自然科学版),2004,23(3):412-414. 被引量:4
  • 7王磊.基于模糊结构元的一阶模糊微分方程[J].佳木斯大学学报(自然科学版),2008,26(6):817-819. 被引量:10
  • 8郭嗣琮.模糊分析中的结构元方法(Ⅰ)[J].辽宁工程技术大学学报(自然科学版),2002,21(5):670-673. 被引量:111
  • 9郭嗣琮.模糊结构元理论与模糊分析数学原理[M].沈阳:东北大学出版社,2004:54-56.
  • 10罗承忠.模糊集合引论(上册)[M].北京:北京师范大学出版社,1994.

二级参考文献25

  • 1郭嗣琮.基于结构元方法的模糊值函数分析学表述理论[J].自然科学进展,2005,15(5):547-552. 被引量:11
  • 2郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 3罗承忠 王德谋.区间值函数积分的推广与Fuzzy值函数的积分[J].模糊数学,1983,(3):45-52.
  • 4吴从昕 马明.模糊分析基础[M].北京:国防工业出版社,1991..
  • 5O. Kaleva, Fuzzy Differential Equations[J]. Fuzzy Sets and Systems, 1987,24:301-317.
  • 6P. Diamond, Tune- dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differential Equations [ J ]. IEEE Transactions on Fuzzy System, 1999,7:734-740.
  • 7E. Hullermeier, An Approach to Modeling and Simulation of Uncertain Dynamical Systems[J]. International Journal of Uncertainty, Fuzziness Knowledge - Bases System, 1997, 5 : 117 - 137.
  • 8O. Kaleva, A Note On Fuzzy DifferenfialEquafions[J]. Nonlinear Analysis ,2006,64:895-900.
  • 9[2]Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems 1987,24(3):319-330.
  • 10[3]D.DUBOIS, H.PRADE.Towards fuzzy differential calculus Part 1:Integration of fuzzy mapping, Part2:Integration on fuzzy intervals, Part3:Differentiation[J].Fuzzy Sets and System 1982,8( 1): 1-7;8(2): 105-116;8(3):225-233.

共引文献123

同被引文献27

  • 1王磊,郭嗣琮.n阶线性方程模糊初值问题的模糊结构元解法[J].辽宁工程技术大学学报(自然科学版),2004,23(3):412-414. 被引量:4
  • 2郭嗣琮,苏志雄,王磊.模糊分析计算中的结构元方法[J].模糊系统与数学,2004,18(3):68-75. 被引量:50
  • 3郭嗣琮,王磊.模糊限定微分方程及定解问题[J].工程数学学报,2005,22(5):869-874. 被引量:10
  • 4郭嗣琮.模糊数与模糊值函数的结构元线性表示[J].辽宁工程技术大学学报(自然科学版),2006,25(3):475-477. 被引量:18
  • 5Chang L S,Zadeh L A. On fuzzy mapping and control[J]. IEEE Trans Systems Man Cybemet, 1972,2: 30- 34.
  • 6Dubois D,Prade H. Towards fuzzy differential calculus., part 3,differentiation[J]. Fuzzy Sets and Systems, 1982,8: 225- 233.
  • 7Kaleva O. Fuzzy differential equati9ns[J]. Fuzzy Sets and Sys- terns, 1987,24: 301-317.
  • 8Song S, Wu C. Existence and uniqueness of solutions to the Cauchy problena of fuzzy differential equations[J]. Fuzzy Sets and Systems, 2000,110: 55- 67.
  • 9Hullermeier E. An approach to modelling and simulation of unsystems[J]. International Journal of Uncertainty Fuzzi- ness Knowledge-Based System, 1997,5 ; 117- 137.
  • 10Guo M, Xue X P, Li R. Impulsive functional differential inclu- sions and fuzzy population models [J]. Fuzzy Sets and Systems, 2003,138: 601- 615.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部