期刊文献+

基于模糊核主成分分析的高光谱遥感影像特征提取研究 被引量:7

HYPERSPECTRAL REMOTE SENSING IMAGE FEATURE EXTRACTION BASED ON FUZZY KERNEL PRINCIPAL COMPONENT ANALYSIS
下载PDF
导出
摘要 主成分分析(PCA)是一种基于数理统计的线性特征变换方法,对线性结构数据的分析非常有效,但是对非线性的高光谱遥感影像数据,容易造成信息丢失和失真。本文引入模式识别中的模糊理论和核理论,有效克服了以上缺点,得到了很好的影像特征提取效果。 The principal component analysis (PCA), a classical linear feature transformation method based on mathematical statistics, is effective in the analysis of linear data. Nevertheless, PCA is likely to result in distortion and loss of data information for non -linear hyperspectral Remote Sensing(RS) image data. In this paper, the fuzzy mathematical theory and the theory of kernel in pattern recognition is proposed for the purpose of effectively overco- ming the shortcomings of traditional PCA. The test results show that the fuzzy kernel principal component analysis (FKPCA) designed in this paper can acquire competitive image feature extraction results.
出处 《国土资源遥感》 CSCD 2009年第3期41-44,99,共5页 Remote Sensing for Land & Resources
基金 国家重点基础研究发展计划(973)项目"对地观测数据-空间信息-地学知识的转化机理"(2006CB701303)资助
关键词 模糊集 核PCA 高光谱遥感影像 特征提取 Fuzzy sets Kernel PCA Hyperspectral RS images Feature extraction
  • 相关文献

参考文献7

  • 1孙家柄.遥感原理与应用[M].武汉:武汉大学出版社,2002.
  • 2黄国宏,邵惠鹤.核主元分析及其在人脸识别中的应用[J].计算机工程,2004,30(13):13-14. 被引量:18
  • 3田野,赵春晖,季亚新.主成分分析在高光谱遥感图像降维中的应用[J].哈尔滨师范大学自然科学学报,2007,23(5):58-60. 被引量:39
  • 4王和勇,姚正安,李磊.基于聚类的核主成分分析在特征提取中的应用[J].计算机科学,2005,32(4):64-66. 被引量:20
  • 5Carlos Alzate, Johan A, Suykens K. Image Segmentation Using a Weighted Kernel PCA Approach to Spectral Clustering[ A ]. Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing ( CIISP 2007 ) [ C ]. 2007 : 208 -213.
  • 6Kim K I, Park S H,Kim H J. Kernel Principal Component Analysis for TextureClassifieation [ J ]. IEEE ,2001, ( 8 ) 2 : 39 - 41.
  • 7Samuel Dambreville, Yogesh Rathi, Allen Tannenbaum. Shape- Based Approach to Robust Image Segmentation Using Kernel PCA [ A ]. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR' 06 ) [ C ]. 2006 : 1 - 8.

二级参考文献12

  • 1赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:82
  • 3Carreira-Perpian M A. A Review of Dimension Reduction Techniques:[Technical Report CS-96-09]. Department of Computer Science, University of Sheffield, 1997
  • 4Maeda E,Murase H. Multi-category classification by kernel based nonlinear subspace method. In:Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 99), IEEE Press, 1999
  • 5Scholkopf B, Smola A J, Muller Klaus-Robert. Kernel Principal Component Analysis [M]. Advances in Kerrel Methods, MIT Press, 1998. 327~352
  • 6Vapnik V N. Statistical learning theory. AT&T Research, London University, 1998
  • 7Smola A J, Scholkopf B. Sparse greedy matrix approximation for machine learning. In: Proc. of ICML'00, Bochum, Germany,Morgan Kaufmann, 2000. 911 ~ 918
  • 8Williams C, Seeger M. Using the Nystrom method to speed up kernel machines. Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2001,13
  • 9Tipping M. Sparse kernel principal component analysis. In Advances in Neural Information Processing Systems 13, MIT Press,Cambridge, MA, 2001. 633~639
  • 10Turk M. Pentland A. Eigenfaces tor Recognition. Journal of Cognitive Neuroscience, 1991,3(1): 71-86

共引文献81

同被引文献102

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部