摘要
假设{Sj}jq=-10是由压缩映射Sj(z)=εj+ρ(z-εj)(1.1)组成的迭代函数系(IFS),其中0<ρ<ρq(q4,ρq的定义见[1]),εj=e2πqji,K是{Sj}jq=-10的吸引子,μ是支撑在K上的Hausdorff测度.主要研究G(z)=∫K(1-zw)-1dμ(w)在其解析区域内的一些特殊的性质,得到G(n)(t)(0<t<1)界的某些估计.
Let the {Sj}q-1j=0 is an iterated function system (IFS) which consists of the compression mapping Sj(x)=εj+ρ(x-εj),0〈ρ〈ρq,q≥4,ρq is defined by [1], εj = e2xji/q K is the attractor of {Sj}q-1j=0,μ Hausdorff measure of surpport on k, this paper studies some special propersties of G(z) = ∫(1 - zw)-1 dμ(w) in its analytic region, some estimations of bound for G^(n)(t)(0 〈 t 〈 1) are obtained.
出处
《怀化学院学报》
2009年第8期23-24,共2页
Journal of Huaihua University
基金
湖南省教育厅资助项目(06A036)
怀化学院资助项目