期刊文献+

Lebesgue-Stieltjes形式的Choquet积分Ⅱ

Choquet Integral Defined by Lebesgue-Stieltjes Integral Ⅱ
下载PDF
导出
摘要 研究了Lebesgue-Stieltjes形式的Choquet积分的收敛性定理,如单调收敛定理、法都引理、控制收敛定理等。 This paper mainly studies some convergence theorems of Choquet integral defined by Lebesgue- Stieltjes integral, such as Monotone convergence theorem, Fatou lemma, Control convergence and so on.
出处 《模糊系统与数学》 CSCD 北大核心 2009年第4期80-83,共4页 Fuzzy Systems and Mathematics
关键词 模糊测度 CHOQUET积分 Lebesgue-Stieltjes形式的Choquet积分 Fuzzy Measure Choquet Integral Choquet Integral Defined by Lebesgue-Stieltjes Integral
  • 相关文献

参考文献2

二级参考文献6

  • 1Chociuet G. Theory of capacities[J]. Ann. Inst. Fourier, 1953,5 : 131-295.
  • 2Murofushi T, Sugeno M. An interpretation of fuzzy measure and Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and System, 1989,29 : 201-227.
  • 3Murofushi T, Sugeno M. A theorem of fuzzy measures:reprentation, the Choquet integral and null sets[J]. J Math Anal Appl. , 1991,159 : 532-549.
  • 4Murofushi T, Sugeno M, Machida M. Non-monotonic fuzzy measure and the Chocluet integral[J].Fuzzy sets and System, 1994,64 : 73-86.
  • 5Sugeno M. Theory of fuzzy integrals and application[D]. Tokyo Institute of Technology,1974.
  • 6朱成熹.测度论基础[M].北京:科学出版社,1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部