期刊文献+

Au/Pt/InGaN/GaN Heterostructure Schottky Prototype Solar Cell 被引量:1

Au/Pt/InGaN/GaN Heterostructure Schottky Prototype Solar Cell
下载PDF
导出
摘要 A patterned Au/Pt/In0.2Ga0.8N/GaN heterostructure Sehottky prototype solar cell is fabricated. The forward current-voltage characteristics indicate that thermionie emission is a dominant current transport mechanism at the Pt/InGaN interface in our fabricated cell. The Sehottky solar cell has an open-circuit voltage of 0.91 V, short-circuit current density of 7mA/cm^2, and fill factor of 0.45 when illuminated by a Xe lamp with a power density of 300 mW/cm^2. It exhibits a higher short-circuit current density of 30 mA/cm^2 and an external quantum efficiency of over 25% when illuminated by a 20-roW-power He-Cd laser. A patterned Au/Pt/In0.2Ga0.8N/GaN heterostructure Sehottky prototype solar cell is fabricated. The forward current-voltage characteristics indicate that thermionie emission is a dominant current transport mechanism at the Pt/InGaN interface in our fabricated cell. The Sehottky solar cell has an open-circuit voltage of 0.91 V, short-circuit current density of 7mA/cm^2, and fill factor of 0.45 when illuminated by a Xe lamp with a power density of 300 mW/cm^2. It exhibits a higher short-circuit current density of 30 mA/cm^2 and an external quantum efficiency of over 25% when illuminated by a 20-roW-power He-Cd laser.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第9期278-281,共4页 中国物理快报(英文版)
基金 Supported by the National High-Tech Research and Development Program of China under Grant No 2007AA06A405, the National Natural Science Foundation of China under Grant Nos 60676057 and 60721063, the National Basic Research Program of China under Grant No 2009CB320300, and the Natural Science Foundation of Jiangsu Province (BK2006126, BK2008019).
  • 相关文献

参考文献18

  • 1Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H, Schaff W J, Saito Y and N~nishi Y 2002 Appl. Phys. Lett. 80 3967.
  • 2Bechstedt F and Furthmuller J 2002 J. Cryst. Growth 246 315.
  • 3O'Donnell K P, Fernandez-Torrente I, Edwards P R and Martin R W 2004 J. Cryst. Growth 269 100.
  • 4Davydov V Y, Klochikhin A A, Emtsev V V, Kurdyukov D A, Ivanov S V, Vekshin V A, Bechstedt F, Furthmuller J, Aderhold J, Graul J, Mudryi A V, Harima H, Hashimoto A, Yamamoto A and Haller E E 2002 Phys. Status Solidi B 234 787.
  • 5Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger K and Kurtz S 2003 J. Appl. Phys. 94 6477.
  • 6Walukiewicz W, Jones R E, Li S X, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W J 2006 J. Cryst. Growth 288 278.
  • 7Chen G D, Zhu Y Z, Yan G J, Yuan J S, Kim K H, Lin J Y and Jiang H X 2005 Chin. Phys. Lett. 22 472.
  • 8Zhu X L , Guo W, Yu N S, Peng M Z, Yan J F, Ge B H, Jia H Q, Chen H and Zhou J M 2006 Chin. Phys. Lett. 23 3369.
  • 9Hamzaoui H, Bauazzi A S and Rezig B 2005 Sol. Energy Mater. Sol. Cells 87 595.
  • 10Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 97 132117.

同被引文献24

  • 1Yoshida A,Agui T, Katsuya N, et al. Development of In GaP/GaAs/InGaAs inverted triple junction solar cells for concentrator application[C] // Technical Digest of 21st Photovoltaic Science and Engineering Conference. Fukuo ka,Japan: [s. n. ],2011 :4B-40-01.
  • 2King R,Boca A, Hong W, et al. Band-gap-engineered ar- chitectures for high efficiency multijunction concentrator solar cells[C]//24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg. Germany: EU PVSEC,2009:55- 61.
  • 3Green M, Emery K, Hishikawa Y, et al. Solar cell efficien cy tables (version 41)[J]. Progress in Photovoltaics, 2013,21(1):1- 11.
  • 4Honsberg C,Jani O,Doolittle A,et al. InGaN-A new solar cell material[C] // Proceedings of the 19th European Pho- tovoltaic Science and Engineering Conference. Paris, France : EPSEC, 2004 : 15-20.
  • 5Wu J, Walukiewicz W, Yu K, et al. Superior radiation re- sistance of InGaN alloys:full-solar-spectrum photovoltaic material system [J]. Journal of Applied Physics, 2003, 94:6477- 6482.
  • 6Marti A, Araujo G. Limiting efficiencies for photovoltaic energy conversion in multigap systems [J]. Solar Energy Materials and Solar Cells, 1996,43 : 203-222.
  • 7Jani O, Honsberg C, Asghar A, et al. Characterization and analysis of InGaN photovoltaic devices[C]//Photovohaic Specialists Conference,2005.31st IEEE Photovoltaic Spe- cialists Conference. Florida, United States: IEEE, 2005: 37- 42.
  • 8Jani O, Ferguson I, Honsberg C, et al. Design and charac- terization of GaN/InGaN solar cells[J]. Applied Physics Letters, 2007,91:132117.
  • 9Neufeld C, Toledo N, Cruz S, et al. High quantum effi-eiency InGaN/GaN solar cells with 2.95 eV band gap[J]. Applied Physics Letters, 2008,93 : 143502.
  • 10Zheng X, Horng R,Wuu D, et al. High-quality InGaN/ GaN heterojunctions and their photovoltaic effects[J]. Applied Physics Letters, 2008,93 : 261108.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部