期刊文献+

使用主值空间表示的各向同性塑性本构方程 被引量:2

THE ISOTROPIC PLASTIC CONSTITUTIVE EQUATIONS REPRESENTED IN THE PRINCIPAL SPACE
下载PDF
导出
摘要 针对各向同性材料,在内变量为标量的假定下,应用张量函数表示定理给出了其塑性应变增量的不变性表示,它的3个不可约基张量取决于应力张量、相互正交且共主轴.建立3个基张量构成的张量子空间与三维主值空间的对应关系,将共主轴的张量采用笛卡尔坐标系中的矢量描述,矢量在不同坐标系下的分量均为张量的一组不可约不变量.定义塑性应变增量对应的矢量为内变量增量,使用张量函数表示理论得到,内变量演化方程除取决于应力对应的矢量和内变量本身外,还取决于应力增量在张量子空间中的投影,该投影就是应力对应矢量的增量,因此,本构方程归结为确定主值空间中矢量之间的关系.最后表明,三维主值空间与张量子空间中的流动法则是等价的. Based on the representation theorem and the assumption that the internal variables are scalars,the general formulation of the plastic strain increment for the isotropic materials is presented in the paper. Three tensor function bases of the general formulation depend on the stresses,are mutually orthogonal and with co-principal axes. The relations between the tensor subspace defined by three tensor function bases and three dimensional principal space are established. Then, the co-principal axis tensors are described by vectors in Cartesian coordinate systems in principal space, whose components consist of irreducible invariants of the tenors. The vector associated to the plastic strain increment in principal space is defined as the internal variables. Using the tensor function representation theorem, we obtain that the evolution of the internal variables depends on the projection of the stress increment on the tensor subspace, which is the components of the increment of the vector associated to the stress tensor. Besides,the evolution also depends on the invariants of the stress and the internal variables themselves, both of which are described by the associated vectors. Therefore,the constitutive equations are revealed to be a simple relationship among vectors in the principal space. Finally,the flow rule is equivalent in the tensor subspace and in the principal space.
作者 陈明祥
出处 《固体力学学报》 CAS CSCD 北大核心 2009年第4期346-353,共8页 Chinese Journal of Solid Mechanics
关键词 内变量 不变量 Lode角 张量函数表示定理 本构方程 塑性势 流动法则 internal variable,invariants, Lode angle, tensor function representation theorem, constitu tive equations, plastic potential, flow rule
  • 相关文献

参考文献19

  • 1Rice J R. Inelastic constitutive relations for solids: An internal-variable theory and it's application to metal plasticity [J]. Journal of the Mechanics and Physics of Solids, 1971,19 : 433-455.
  • 2Hansen A C, Brown R L. Internal state variable approach to constitutive theories for granular materials with snow as an example [J]. Mechanics of Materials, 1988,7: 109-119.
  • 3Lubliner J, Auricchio F. Generalized plasticity and shape-memory alloys [J]. International Journal of Solids and Structures, 1996,33 : 991-1003.
  • 4Houlsby G T, Puzrin A M, A thermomechanical framework for constitutive models for rate-independent dissipative materials [J]. International Journal of Plasticity, 2000,16 : 1017-1047.
  • 5Wang C C. A new representation theorem for isotropic functions, Part Ⅰ and Ⅱ[J]. Archive for Rational Mechanics and Analysis, 1970,36 : 166-223.
  • 6Zhang J M, Rychlewski J. Structural tensors for anisotropic solids [J]. Archives of Mechanics, 1990,42: 267-277.
  • 7方辉宇.张量函数的表示理论──本构方程统一不变性研究[J].力学进展,1996,26(1):114-137. 被引量:8
  • 8Turovtsev G. A simple constitutive relationship for isotropic solids with stress-state type dependent prop- erties [J]. International Journal of Solids and Structures, 1995,32: 3075-3085.
  • 9Eric Laine,Claude Vallee, Danielle Fortune. Nonlinear isotropic constitutive laws: choice of the three invariants, convex potentials and constitutive inequalities [J]. International Journal of Engineering Science, 1999,37 : 1927-1941.
  • 10Wu W. Rational approach to anisotropy of sand [J]. International Journal for Numerical Analysis Methods in Geomechanics, 1998,22: 921-940.

二级参考文献1

共引文献8

同被引文献21

  • 1方辉宇.张量函数的表示理论──本构方程统一不变性研究[J].力学进展,1996,26(1):114-137. 被引量:8
  • 2王仲仁.Lode参数的物理实质及其对塑性流动的影响[J].固体力学学报,2006,27(3):277-282. 被引量:19
  • 3Simo JC, Taylor RL. Consistent tangent operators for rate-independent elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 1985, 48:101-118.
  • 4Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. New York: John Wiley Sons & Ltd, 2000.
  • 5Zheng QS, Betten J. On the tensor function representations of 2nd-order and 4th-order tensors. Zeitschrift fur angewandte Mathematik und Mechanik, 1995, 75:269-281.
  • 6Rosati L. A novel approach to the solution for the tensor equation AX+XA=H. International Journal of Solids and Structures, 2000, 37:3457-3477.
  • 7Larsson R, Runesson K. Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type. Mechanics of Cohesive-Frictional Materials, 1996, 1:367-383.
  • 8Perid D, Souza Neto E. A new computational model for tresca plasticity at finite strains with an optimal parametrization in the principal space. Computer Methods in Applied Mechanics and Engineering, 1999, 171: 463-489.
  • 9Foster CD, Regueiro RA, Fossum AF, et al. Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Computer Methods in Applied Mechanics and Engineering, 2005, 194:5109-5138.
  • 10Clausen J, Damkilde L, Andersen L. An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space. Computers and Structures, 2007, 85:1795-1807.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部