期刊文献+

Some New Lie Symmetry Groups of Differential-Difference Equations Obtained from a Simple Direct Method

Some New Lie Symmetry Groups of Differential-Difference Equations Obtained from a Simple Direct Method
下载PDF
导出
摘要 In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto the differential-difference equations.With the extended method,we study the well-known differential-difference KPequation,KZ equation and (2+1)-dimensional ANNV system,and both the Lie point symmetry groups and the non-Liesymmetry groups are obtained.
作者 ZHI Hong-Yan
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期385-388,共4页 理论物理通讯(英文版)
关键词 symmetry group differential-difference equation direct method 微分差分方程 Lie对称性 符号计算系统 李对称群 微分方程 KP方程 物理层 数学
  • 相关文献

参考文献16

  • 1P.J. Olver, Application of Lie Group to Differential Equation, Springer-Verlag, New York (1986).
  • 2G.W. Bluman and S.C. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, New York (2002).
  • 3P.A. Clarkson and M.D. Kruskal, J. Math. Phys. 30 (1989) 2201.
  • 4S.Y. Lou and H.C. Ma, J. Phys. A: Math. Gen. 38 (2005) L129.
  • 5D. Levi and P. Winternitz, Phys. Lett. A 152 (1991) 335.
  • 6D. Levi and P. Winternitz, J. Math. Phys. 34 (1993) 3713.
  • 7G.R. Quispel, H.W. Cape, and R. Sahadevan, Phys. Lett. A 170 (1992) 379.
  • 8D. Levi, L. Vinet, and P. Winternitz, J. Phys. A: Math. Gen. 30 (1997) 633.
  • 9R. Floreanini and L. Vinet, J. Math. Phys. 36 (1995) 3134.
  • 10V.A. Dorodnitsyn, Int. J. Mod. Phys. A 5 (1994) 723.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部