摘要
利用几何非线性的应变-位移关系,在小变形假设条件下,得到了一般柔性体变形的广义坐标二阶小量表达式。在此基础上,利用Kane-Huston方法,建立计及动力刚化的柔性多体系统动力方程。仿真算例证明了该理论的正确性和有效性。
Flexible multibody systems undergoing the large scale motion of bodies high speed can produce dynamic stiffening due to the coupling between rigid motion and elastic deflection.Traditional dynamics can hardly involve these terms.A formulation of elastic deformation of an arbitrary flexible body is derived to the second order approximation by means of geometrically nonlinear strain displacement relation under small deformation assumption.The Kane Huston′s method is used to establish the dynamic equations of flexible multibody systems with dynamic stiffening.The validity and effectiveness of the theories presented in this paper are verified by a numerical simulation.
出处
《振动工程学报》
EI
CSCD
1998年第3期340-345,共6页
Journal of Vibration Engineering
基金
国家自然科学基金
关键词
非线性振动
柔性结构
多体系统
动力刚化
nonlinear vibraiton
flexible structures
multibody system
dynamic stiffening
Kane Huston′s method