期刊文献+

基于几何非线性及小变形条件的柔性多体系统动力学 被引量:2

Dynamics of Flexible Multibody Systems Based on Geometric Nonlinearity and Small Deformation Condition
下载PDF
导出
摘要 利用几何非线性的应变-位移关系,在小变形假设条件下,得到了一般柔性体变形的广义坐标二阶小量表达式。在此基础上,利用Kane-Huston方法,建立计及动力刚化的柔性多体系统动力方程。仿真算例证明了该理论的正确性和有效性。 Flexible multibody systems undergoing the large scale motion of bodies high speed can produce dynamic stiffening due to the coupling between rigid motion and elastic deflection.Traditional dynamics can hardly involve these terms.A formulation of elastic deformation of an arbitrary flexible body is derived to the second order approximation by means of geometrically nonlinear strain displacement relation under small deformation assumption.The Kane Huston′s method is used to establish the dynamic equations of flexible multibody systems with dynamic stiffening.The validity and effectiveness of the theories presented in this paper are verified by a numerical simulation.
出处 《振动工程学报》 EI CSCD 1998年第3期340-345,共6页 Journal of Vibration Engineering
基金 国家自然科学基金
关键词 非线性振动 柔性结构 多体系统 动力刚化 nonlinear vibraiton flexible structures multibody system dynamic stiffening Kane Huston′s method
  • 相关文献

参考文献1

  • 1刘又午,多体系统动力学.上、下,1991年

同被引文献25

  • 1齐朝晖,唐立民,陆佑方.一种建立多体系统计算模型的新方法[J].力学学报,1994,26(5):593-598. 被引量:4
  • 2张大均 刘又午 员超.柔性多体系动力学[J].Chinese Journal of Mechanical Engineering(机械工程学报:英文版),1994,7(2):156-162.
  • 3Shabana A A. Dynamics of multibody systems [J]. John Wiley & Sons Inc, 1989.
  • 4Rheinboldt W C, Simeon B. Computing smooth solutions of DAEs for elastic multibody systems[J]. Computers & Mathematics with Appications, 1999, 37 : 69-83.
  • 5Fisette P, Vaneghem B. Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme[J]. Computer Methods in Applied Mechanics and Engneering, 1996, 135:85-105.
  • 6Wu B, White R E. One implementation variant of the finite difference method for solving ODEs/DAEs [J]. Computers and Chemical Engineering, 2004, 28 : 303- 309.
  • 7Park K C, Chiou, J C. Stabilization of computational procedures for constrained dynamical systems [J]. Journal of Guidance, Control and Dynamics, 1988, 11:365-370.
  • 8Amirouche F M L, Tung C W. Regularization and stability of the constraints in the dynamics of multibody systems[J]. Nonlinear Dynamics, 1990,3,459-475.
  • 9Yen J. Constrained equations of motion in multibody dynamics as ODEs on manifolds [J]. SIAM Journal on Numerical Analysis, 1993,30:553-568.
  • 10Bauchau O A. A self-stabilized algorithm for enforcing constraints in multibody systems [J]. International Journal of Solids and Structures, 2003, 40:3253-3271.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部