期刊文献+

Two-Dimensional Euler Adaptive Mesh Method on Detonation 被引量:1

Two-Dimensional Euler Adaptive Mesh Method on Detonation
下载PDF
导出
摘要 The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions. The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期141-145,共5页 北京理工大学学报(英文版)
基金 Sponsored by the National Natural Science Foundation of China(10676120) Laboratory of Computational Physics Foundation(9140C690101070C69)
关键词 adaptive mesh refinement (AMR) DETONATION two-dimension EULER numerical simulation adaptive mesh refinement (AMR) detonation two-dimension Euler numerical simulation
  • 相关文献

参考文献7

  • 1Feng Qijing.Two-dimensional elastic-plastic hydrody-namics high accuracy Euler program[]..2002
  • 2Feng Qijing,Hao Pengcheng,Hang Yihong,et al.An Euler numerical simulation of the explosively-formed pro-jectile[].Explosion and Shock Waves.2008
  • 3Feng Qijing,He Changjiang,Zhang Min,et al.Two-di-mensional multi-component Euler adaptive refinement mesh method[]..2004
  • 4Brackbill J U,Saltzman J S.Adaptive zoning for singular problems in two dimensions[].Journal of Computational Physics.1982
  • 5MJ Berger,P Colella.Local adaptive mesh refinement for shock hydrodynamics[].Journal of Computational Physics.1989
  • 6MacNeice,P,Olson,KM,Mobarry,C,Fainchtein,RD,Packer,C.PARAMESH: a parallel adaptive mesh refinement community toolkit[].Computer Physics Communications.2000
  • 7Phillip Colella Daniel T. Graves Benjamin J. Keen and David Modiano.A Cartesian grid embedded boundary method for hyperbolic conservation laws[].Journal of Computational Physics.2006

同被引文献12

  • 1Fickett W, Davis W C. Detonation: Theory and experiment[M]. Berkeley: University of California Press, 1979 : 13-54.
  • 2Johnson J N, Tang P K, Forest C A. Shock wave initiation of heterogeneous reactive solids[J]. Journal of Applied Physics, 1985,57(9) :4323-4334.
  • 3Starkenberg J. Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocode[C]//Wardell J F, Maienschein J L. Proceedings of 12th International Detonation Symposium. San Die- go, CA: Office of Naval Research, 2002:1381-1390.
  • 4Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Flu- ids, 1980,23(12) :2362-2372.
  • 5Tarver C M, McGuire E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materi als[C]//Wardell J F, Maienschein J L. Proceedings of 12th International Detonation Symposium. San Diego, CA: Office of Naval Research, 2002 ..971-980.
  • 6Nichols IIIA L, Tarver C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[C]//Wardell J F, Maienschein J L. Proceedings of 12th International Detonation Symposium. San Diego, CA: Office of Naval Research, 2002:779-788.
  • 7Campbell A W, Travis J R. The shock desensitization of PBX-9404 and composition B3[C]//Davis W C. Proceed ings of the 8th International Detonation Symposium. Albuquerque, NM: Naval Surface Warfare Center, 1985: 1057-1068.
  • 8Cox M, Campbell A W. Corner-turning in TATB[C]// Short J M. Proceedings of the 7th International Detonation Symposium. White Oak, MD: Naval Weapons Center, 1981:624-633.
  • 9DeOliveira G, Kapila A K, Schwendeman D W, et al. Detonation diffraction dead zones and the ignition-and- growth model[C]//Peiris S M. Proceedings of the 13th International Detonation Symposium. Norfolk, VA : Of-rice of Naval Research, 2006:13-22.
  • 10Campbell A W. Diameter effect and failure diameter of a TATB-based explosive[J]. Propellants, Explosives, Py- rotechnics, 1984,9(6) : 183-187.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部