摘要
Eulerian method is a main numerical simulation method in elastoplastic hydrodynamics, which is suitable for the problems with multi-component and large deformation. As the feature of the problems to be simulated, such as detonation and penetration, the dynamic parallel method (DPM) is designed to adjust the computational domain dynamically to get better load balance. Dynamic parallel method can be separated into two parts: one is division of initial computational domain and location of the data, the other is expansion of the computational domain and adjustment of the data location. DPM program can greatly shorten computational time and be preferable in simulating actual problems. The speedup of the DPM program is linear in parallel test. DPM can be popularized to parallel program of other multi-component high dimension Eulerian methods naturally.
Eulerian method is a main numerical simulation method in elastoplastic hydrodynamics, which is suitable for the problems with multi-component and large deformation. As the feature of the problems to be simulated, such as detonation and penetration, the dynamic parallel method (DPM) is designed to adjust the computational domain dynamically to get better load balance. Dynamic parallel method can be separated into two parts: one is division of initial computational domain and location of the data, the other is expansion of the computational domain and adjustment of the data location. DPM program can greatly shorten computational time and be preferable in simulating actual problems. The speedup of the DPM program is linear in parallel test. DPM can be popularized to parallel program of other multi-component high dimension Eulerian methods naturally.
基金
Sponsored by State Key Laboratory of Computational Physics Fundation(9140C690101070C69)