期刊文献+

基于PSO的三参数威布尔分布参数的联合估计方法 被引量:10

Method of united estimation to the parameters of three-parameter Weibull distribution based on PSO
下载PDF
导出
摘要 针对图估计及双线性回归估计存在的弊端,将双线性回归估计和极大似然估计(MLE)结合起来,形成一种对三参数威布尔分布参数的联合估计。详细分析了联合优化的核心工具——粒子群优化(PSO)算法的特点、实现和收敛指标,并对基于双线性回归的初值获取作了分析。以仿真和实际例证为基础,详细评析了联合估计参数的优点和缺陷。结果表明:基于PSO优化的联合估计在一定程度上对三参数威布尔分布参数的搜索具有良好的性质,其具体体现为搜索准确和稳定。 In this paper, the methods of double-linear regression and maximum likelihood estimation (MLE) are combined to form a method of united-estimation to the parameters of three-parameter Weibull distribution, which aims at the drawback of merely using figure-estimation or double-linear regression estimation. Taken as a core tool, the algorithm of Particle swarm optimization (PSO) and its characteristics, realization and convergence index are analyzed in detail, and how to get initial value based on double-linear regression is analyzed too. Then the advantage and disadvantage of the united-estimation are evaluated, which is based on simulation and actual cases. The result shows that the presented united optimization method used for searching the parameters of three-parameter Weibull distribution based on PSO algorithm has good characteristics in certain extend, namely, the searching is correct and robust.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第8期1604-1612,共9页 Chinese Journal of Scientific Instrument
基金 国防基础科研项目(A1420061264) 总装预研基金(9140A17030308DZ02) NSFC(60673011) UESTC(JX0756)资助项目
关键词 联合估计威布尔分布 粒子群优化 线性回归极大似然估计 united estimation Weibull distribution particle swarm optimization (PSO) linear regression maxi- mum likelihood estimation (MLE)
  • 相关文献

参考文献16

  • 1MURTHY D N P, BULMER M, ECCLESTON J A. Weibull model selection for reliability modeling[J]. Reliability Engineering & System Safety, 2004, 86(3): 257- 267.
  • 2XIE M, GOH T N, TANG Y. On changing points of mean residual life and failure rate function for some generalize weibull distributions[J]. Reliability Engineering & System Safety 2004,84(3):293-299.
  • 3NADARAJAH S. On the moments of the modified weibull distribution[J]. Reliability Engineering & System Safety, 2005,90(1): 114-117.
  • 4NG H K T. Parameter estimation for a modified weibull distributionfor progressively type-II censored samples[J]. IEEE Trans Reliability, 2005,54(3):374-380.
  • 5EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[A]. Proc of the 6th Int'l Sympo- sium on Micro Machine and Human Science[C]. Piscata- way NJ: IEEE Service Center, 1995:39-43.
  • 6刘叫治.可靠性试验[M].北京:电子工业出版社.2004:60-73.
  • 7严晓东,马翔,郑荣跃,吴亮.三参数威布尔分布参数估计方法比较[J].宁波大学学报(理工版),2005,18(3):301-305. 被引量:58
  • 8SHI Y, EBERHART R. A modified particle swarm optimizer[A]. Proceedings of the IEEE International Conference on Evolutionary Computation, Piscataway NJ[C]. IEEE Press, 1998: 69-73.
  • 9SHI Y H, EBERHART R. Parameter selection in particle swarm optimization[A]. Proceedings of 7th Annual Conference on Evolutionary Programming[C]. March 1998: 591-601.
  • 10CLERC M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[A].Proc CEC 1999[C]. 1999:1951-1957.

二级参考文献37

  • 1陈塑寰,郭克尖,陈宇东.不确定性参数系统振动控制闭环特征值的上、下界估计[J].计算力学学报,2004,21(5):528-534. 被引量:23
  • 2王华胜,李忠厚,林荣文.耗损故障的三参数Weibull分布极大似然估计方法[J].中国铁道科学,2004,25(5):39-42. 被引量:9
  • 3张子达,赵丁选,邹广德,王晓丽.用优化方法求韦布尔参数的最优估计[J].农业工程学报,1996,12(2):76-80. 被引量:4
  • 4[1]Inman, Daniel J. Vibration with Control, Measure-ment, and Stability[M]. New Sersey: Prentice-Hall, Inc., 1989.
  • 5[2]Meirovitch L.Dynamics and Control[M].New York: Wiley, 1990.
  • 6[3]Maghami P G, Juang J N. Efficient eigenvalue assi-gnment for large space structures[J]. Journal of Guidance, Control and Dynamics, 1990,13(6):1033-1039.
  • 7[4]Chen Y D, Chen S H, Liu Z S. Modal optimalcontrol procedure for near defective systems[J]. Journal of Sound and Vibration, 2001,245(1):113-132.
  • 8[5]Chen Y D, Chen S H, Liu Z S. Quantitative measures of modal controllability and observability for the defective and near defective systems[J]. Journal of Sound and Vibration, 2001,248(3):413-426.
  • 9[6]Chen Jiawen, Cheng Jinshing, Hsieh Jerguang. Tra-cking control for uncertain nonlinear dynamical systems described by differential inclusions[J]. Journal of Mathematical Analysis and Applications,1999,236(2):463-479.
  • 10[7]Marc Quincampoix, Nicolas Seube. Stabilization ofuncertain control systems through piecewise constant feedback[J]. Journal of Mathematical Analysis and Applications, 1998,218(1):240-255.

共引文献117

同被引文献109

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部