期刊文献+

基于Hessian矩阵及梯度熵的疑似肺结节检测算法 被引量:4

Suspected pulmonary nodule detectien algorithm based on Hessian matrix and grads entropy
下载PDF
导出
摘要 提出一种基于Hessian矩阵的多尺度增强滤波和梯度熵选择的疑似肺结节检测算法。首先,构造基于Hessian矩阵的多尺度圆形增强滤波器对肺部计算机断层扫描(CT)图像中的圆形区域进行增强,使得类似圆形的疑似结节区域得以增强,其他干扰区域得以抑制。然后,计算增强后的圆形肺结节区域(孤立圆、线交叉形成的圆)在原始灰度图像中相应区域的梯度熵,采用切比雪夫不等式确定孤立圆梯度熵分布区间,进行疑似结节区域的选择。实验结果表明,该算法能较好地检测肺部CT图像中疑似肺结节区域,为后续的肺结节检测以及诊断打下基础。 A suspected pulmonary nodule detection algorithm is presented based on multi-scale enhancement filtering of Hessian matrix and selecting of grads entropy. Firstly, the multi-scale circular filter based on Hessian matrix is constructed to enhance the circular area of the pulmonary computed tomography (CT) images, which enhances the circular suspected pulmonary nodule and suppresses other interfering areas. Secondly, the grads entropy of the area of the original gray image corresponding to the area of the enhanced circle (the solitary circle and the circle formed by the intersection of the lines) is calculated, and the range of the grads entropy of the solitary circle confirmed by Chebyshev inequality is used to select the suspected pulmonary nodules. Experiment results indicate that the algorithm detects the suspected pulmonary nodule accurately, which is a basis for further pulmonary nodule detection and diagnose.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第8期1702-1706,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60671050) 辽宁省自然科学基金(20052021)资助项目
关键词 疑似肺结节 HESSIAN矩阵 多尺度增强滤波 梯度熵 切比雪夫不等式 suspected pulmonary nodule Hessian matrix multi-scale enhancement filtering grads entropy Che- byshev inequality
  • 相关文献

参考文献8

  • 1石羽,曹晓光,张弘,张晓鹏.肺结节自动检测算法研究[J].仪器仪表学报,2006,27(z3):2265-2267. 被引量:7
  • 2GE Z Y, SAJOMER B, CHAN H-P, et al. Computer-aided detection of lung nodules: False positive reduction using a 3D gradient field method and 3D ellipsoid fitting[J]. Med Phys, 2005,32:2443-2454.
  • 3PARK D S, BEAULIEU C F, RUBIN G D, et al. Surface normal overall overlap: A computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT[J]. IEEE Trans Med Image, 2004, 23: 661-675.
  • 4YAMAMOTO S, MATSUMOTO M. Quoit filter- a new filter based on mathematical morphology to extract the isolated shadow, and its application to automatic detection of lung cancer in X-ray CT [C]. Proc. 13th Int Conf Pattern Recognition. Vienna, Austria, 1996,2:3-7.
  • 5YAMAMOTO S. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT[J]. Systems and Computers in Japan, 2005,36(7):40-53.
  • 6BAE K T, K1M J S, NAY H, et al. Pulmonary nodules: automated detection on CT images with morphologic matching algorithm-preliminary results[J]. Radiology, 2005, 236:295-299.
  • 7LI Q. Selective enhancement filters for nodules, vessels, and airway walls in two-and three-dimensional CT scans [J].Med. Phys, 2003,30(8):2040-2051.
  • 8郭薇,魏颖,周翰逊,薛定宇.肺结节的自适应检测算法[J].系统仿真学报,2009,21(13):3955-3958. 被引量:2

二级参考文献17

  • 1魏颖,徐心和,贾同,赵大哲.基于优化水平集方法的CT图像肺结节检测算法[J].系统仿真学报,2006,18(z2):909-911. 被引量:7
  • 2于丽娟,曲丽英,孙秀威,于树江,鄢凤昌,李大为.肺内小病灶CT表现及其病理基础的研究(附76例分析)[J].中国医学影像学杂志,1996,4(1):20-22. 被引量:18
  • 3CC McCulloch, RA Kaucic, PRS Mendonca, et al. Model-Based Detection of Lung Nodules in Computed Tomography Exams: Thoracic computer-aided diagnosis [J]. Academic Radiology (S1076-6332), 2004, 11(3): 258-266.
  • 4Borocazy L, Zhao L, Lee KP. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD [J]. IEEE Trans Info Tech Biomed (S1089-7771), 2006, 10(3): 504-511.
  • 5Li Qiang. Recent Progress in Computer-aided Diagnosis of Lung Nodules on Thin-section CT [J]. Computerized Medical Imaging and Graphics (S0895-6111), 2007, 31(3): 248-257.
  • 6H Arimura, S Katsuragawa, K Suzuki, et al Computerized Scheme for Automated Detection of Lung Nodules in Low-Dose Computed Tomography Images for Lung Cancer Screening [J]. Academic Radiology (S1076-6332), 2004,11(6): 617-629.
  • 7Shinji Yamamoto. Image Processing Algorithm of Computer-Aided Diagnosis in Lung Cancer Screening Systems and Computers in Japan [J]. Systems and Computers in Japan (S0882-1666), 2005, 36(7): 385-405.
  • 8P Delogu, M E Fantacci, I Gori, et al Computer-aided detection of pulmonary nodules in low-dose CT [J]. Med. Phys (S0094-2405), 2005, 30(8): 2040-2051.
  • 9Rafael C Gonzalez,Pdchard E Woods.数字图像处理(matlab版)[M].沅秋琦译.北京:电子工业出版社,2002:347-363.
  • 10Vapnik V N. Estimation of Dependencies Based on Empirical Data [M]. Berlin, Germany: Springer-Verlag, 1982, (S1): 129-140.

共引文献7

同被引文献29

  • 1李鸿林,张忠民,羿宗琪.中值滤波技术在图像处理中的应用[J].信息技术,2004,28(7):26-27. 被引量:27
  • 2DU Y P, PARKER D L. Vessel enhancement filtering in three dimensional MR angiography[ J]. Journal of Magnetic Resonance Imaging, 1995, 5(3) : 353 - 359.
  • 3ORKISZ M M. Improved vessel visualization in MR angiography by nonlinear anisotropic filtering[ J]. Magnetic Resonance in Medicine, 1997, 37(6) : 914 -918.
  • 4FRANGI AF, NIESSEN W J, VINCKEN K L. Muhiscale vessel enhancement filtering[ C]// Medical Image Computing and Computer- Assisted Intervention, LNCS 1496. Berlin: Springer, 1998:130 - 137.
  • 5PRESS W H. The art of scientific computing[ M]. Cambridge: Cambridge University Press, 1986:498 - 546.
  • 6LORENZ C, CARLSEN I, BUZUG T M. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images [ C]//CVRMed-MRCAS, LNCS 1205. Berlin: Springer, 1997:233-242.
  • 7STAAL J J, ABRAMOFF M D, NIEMEIJER M A, et al. Ridge based vessel segmentation in color images of the retina[ J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501 -509.
  • 8VIERGEVER M, LUIJTEN P. DRIVE: Digital retinal images for vessel extraction[ EB/OL]. [2010 -09 -01]. http://www, isi. uu. nl/ResearctJDatabazes/DRIVE/.
  • 9HOOSHYAR S, KHAYATI R. Retina vessel detection using fuzzy ant colony algorithm[ C]//2010 Canadian Conference on Computer and Robot Vision. Washington, DC: IEEE Computer Society, 2010: 239 - 244.
  • 10NIEMEIJER M, STAAL J, GINNEKEN B, et al. Comparative study of retinal vessel segmentation methods on a new publicly available database[ C]//Medical Imaging 2004, SPIE 5370. San Diego: SPIE Medical Imaging, 2004:648 - 656.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部