期刊文献+

矩形薄板瞬态响应的卷积型DQ半解析法 被引量:2

Convolution-Type Semi-Analytic DQ Approach for Transient Response of Rectangular Plates
下载PDF
导出
摘要 卷积型的Gurtin变分原理是目前在数学上唯一能和动力学初值问题完全等价的变分原理,它完全反映了有关初值问题的全部特征.通过卷积将矩形薄板原始控制方程构造成包含初始条件的新的具有完整初值问题特征的控制方程.对新的控制方程在时间域取解析函数,在空间域采用离散的DQ(differential quadrature)法,从而构造了卷积型DQ半解析法.该方法既可以达到和Gurtin变分原理相同的效果,又避开了Gurtin泛函的繁复.经对矩形薄板的动力响应问题的计算表明,该方法是一种精度好效率高的求解动力响应问题的计算方法. The convolution-type Gurtin variational principle is known as the only variational principle, that is, from mathematical point of view, totally equivalent to the initial value problem system. The equation of motion of rectangular thin plates was first transformed to a new governing equation containing initial conditions by using convolution method. A convolution-type semi-analytical DQ approach, which involves differential quadrature (DQ) approximation in space domain and an analytical series expansion in time domain, was proposed to obtain the transient response solution. This approach offers the same advantages as Gurtin variational principle and at the same time, is much simpler in the calculation. Numerical results show that it is very accurate, yet computationally efficient for the dynamic response of plates.
出处 《应用数学和力学》 CSCD 北大核心 2009年第9期1069-1077,共9页 Applied Mathematics and Mechanics
关键词 卷积 瞬态响应 DQ(differential quadrature)法 半解析法 convolution transient response differential quadrature method semi-analytical method
  • 相关文献

参考文献11

  • 1Gurtin M E. Variation principles for linear initial-value problem[ J]. Quarterly Journal of Applied Mechanics, 1964,22(3) :252-264.
  • 2罗恩.关于线弹性动力学中各种类型变分原理.中国科学:A辑,1987,9:936-948.
  • 3Peng J S, Zhang J Y, Lewis R W. A semi-analytical approach for solving forced vibration problems based on convolution-type variational principle[ J]. Computers and Structures, 1995,59( 1 ) : 157-179.
  • 4Bellman R, Casti J. Differential quadrature and long-term integration[ J]. Journal of Mathematical Analysis and Applications, 1971,34(2) :235-238.
  • 5Cortinez V H. DQM for vibration analysis of conoosite thin-wafted curved beams[ JJ. Journal of Sound and Vibration ,2001,246(3) :551-555.
  • 6Hsu M H. Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method[ J ] . Computer Methods in Applied Mechanics and Engineering, 2005, 194( 1 ) : 1-17.
  • 7Claudio F, Tomasiello S. Static analysis of a Bickford beam by means of the DQEM[ J]. International Journal of Mechanical Sciences ,2007,49( 1 ) : 122-128.
  • 8Malekzadeha P, Karamib G. Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates[ J ]. Engineering Structures ,2005,27(8) : 1563-1574.
  • 9熊铃华,彭建设.卷积加权残值法解圆板的动力学问题[J].西华师范大学学报(自然科学版),2008,29(1):72-75. 被引量:1
  • 10李永莉,赵志岗,侯志奎.卷积型加权残值法求解薄板的动力学问题[J].工程力学,2006,23(1):43-46. 被引量:5

二级参考文献15

  • 1马立明,何玉敖.应用Gurtin变分原理计算动力响应的单步时间元法[J].工程力学,1995,12(1):24-29. 被引量:10
  • 2彭建设,张敬宇.求解干扰力下板动力响应的空—时半解析法[J].工程力学,1996,13(A02):433-435. 被引量:3
  • 3Clough R W. Dynamics of structure [M]. New York:McGraw-Hill Book Co., 1975.
  • 4Newmark N M. A method of computation for structural dynamics [I]. ASCE. J. of Engineering Mechanics Division, 1959, 85(3): 67-94.
  • 5Mather N B, Marmo O A. On enhancement of accuracy in direct integration dynamic response problems [J].Earthquake Engineering and Structural Dynamics, 1991,20: 699-703.
  • 6Warburton G B. Formulate for errors for initial displacement and velocity problems using the newmar kmethod [J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 565-573.
  • 7Gurtin M E. Variational principles for linear elastodynamics [J]. Avchive for Rational Mechanics and Analysis, 1964, 16(1): 34-50.
  • 8CLOUGH W. Dynamics of Structure[ M ]. New Youk : McGrawHill BOOD Co. , 1975.
  • 9徐芝纶.弹性力学(下)[M].北京:高等教育出版社,1989.
  • 10WAY S. Bending of Circular Plates with Large Deflection[ J]. AOM, 1956,12:637 - 636.

共引文献6

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部