期刊文献+

纳米力学共振腔的双模压缩态研究

Two-Mode Squeezed State of Nanomechanical Resonators
下载PDF
导出
摘要 引入了一个方便的控制和测量纳米力学共振腔(NAMRs)的模型.在旋波近似下引入产生、湮灭算符,得到dc-SQUID的自由Hamilton量和dc-SQUID与两个纳米力学共振腔之间的相互作用Hamilton量.在Heisenberg表象下,把dc-SQUID的模看作一个经典场,采用共同坐标算符和动量算符发现两个纳米力学共振腔的双模会产生压缩态. A flexible model for the control and measurement of NAMRs was introduced. The free Hamiltonian of the dc-SQUID(direct current superconducting quantum interference device) and the interaction Hamiltonian between these two NAMRs and the dc-SQUID by introducing the annihilation and creation operators under the rotating wave approximation were obtained. The mode of the dc- SQUID as a classical flied can be treated. In the Heisenberg picture, the generation of two-mode squeezed states of two nanomechanical resonators is shown by their collective coordinate and momenturn operators.
出处 《应用数学和力学》 CSCD 北大核心 2009年第9期1085-1090,共6页 Applied Mathematics and Mechanics
基金 河北省自然科学基金资助项目(A200600029) 河北省科技攻关资助项目(06547003D-1)
关键词 力学共振腔 双模 压缩态 mechanical resonator two-mode squeezed state
  • 相关文献

参考文献11

  • 1Cleland A N. Foundations of Nanomechanics : From Solid-State Theory to Device Applications[ M ] . Berlin: Springer-Verlag, 2002.
  • 2Brick R H, Erbe A, Pescini L, et al. Nanostructured silicon for studying fundamental aspects of nanomechanics [J]. J Phys : Concl Mat, 2002,14(34) : R905-R945.
  • 3Blencowe M. Quantum electromechanical systems[ J]. Phys Rep ,2004,395(3) : 159-222.
  • 4Schwab K C, Roukes M L. Putting mechanics into quantum mechanics[ J ]. Physics Today, 2005,58 (7) :36-42.
  • 5厉江帆,黄春佳,姜宗福,黄祖洪.含时耦合谐振子系统的时间演化与双模压缩态[J].物理学报,2005,54(2):522-529. 被引量:7
  • 6曾爱华,赵云辉,匡振华.纠缠相干态的压缩特性[J].量子光学学报,2004,10(2):67-72. 被引量:5
  • 7Xue F, Wang Y D, Stm C P, et al. Controllable coupling between flux qubit and nanomechanical resonator by magnetic field[J]. New J Phys ,2007,9(2):35-42.
  • 8XUE Fei,ZHONG Ling,LI Yong, et al . Analogue of cavity quantum electrodynamics for coupling between spin and a nanomechanical resonator:dynamic squeezing and coherent manipulations[ J]. Phys Rev B,2007,75(3) :33 407-33 410.
  • 9Huang X M H, Zorman C A, Mehregany M, et al. Nanoelectromechanical systems: nanodevice motion at microwave frequencies [ J ]. Nature, 2003,421(6922) : 495-498.
  • 10Gaidarzhy A, Zolfagharkhani G, Badzey R L, et al. Evidence for quantized displacement in macroscopic nanomechanical oscillators[ J]. Phy Rev Lett ,2005,94(3) :30 402-30 405.

二级参考文献30

  • 1赖云忠,梁九卿.哈密顿算符是SU(1,1)和SU(2)算子含时线性组合量子系统的时间演变及厄密不变量[J].物理学报,1996,45(5):738-746. 被引量:3
  • 2高孝纯,高隽,符建.量子不变量理论与离子在联合量子阱中的运动[J].物理学报,1996,45(6):912-923. 被引量:10
  • 3GOTTESMAN D, CHUANG I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J]. Nature, 1999,402: 390.
  • 4NILSEN M A, CHUANG I L. Quantum computation and quantum information [M]. Cambridge, Cambridge University Press, 2000. 28.
  • 5BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleportating an unknown quantum state via dual classical Einstein-Podolsky-Rosen channels [J]. Phys Rev Lett, 1993, 70: 1895.
  • 6MATTLE K, WEINFURTER H, et al. Denst coding in experimental quantum communication [J]. Phys Rev Lett, 1996, 76: 4656.
  • 7BENNETT C H, BRASSARD G, MERMIN N D. Quantum cryptography without Bell's theorem [J]. Phys Rev Lett, 1992, 68: 557.
  • 8GIOVANNETTI V, LIOYD S, MACCONE L. Positioning and clock synchronization through entanglement [J]. Phys Rev A, 2002, 65: 22309.
  • 9WODKIEWICZ K, ZUBAIRY M S. Effect of laser fluctuations on squeezed states in a degenerate parametric amplifier [J]. Phys Rev A, 1983, 27: 203.
  • 10ZHOU Lan, KUANG Leman. Optical preparation of entangled squeezed vacuum states [J]. Phys Lett A, 2002, 302: 273.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部