期刊文献+

Petri网本原可重复向量的求解算法及实现 被引量:6

An Algorithm to Obtain the Primitive Repetitive Vector of Petri Nets
下载PDF
导出
摘要 Petri网本原可重复向量是一个重要结构性质.本文定义了网N的可重复向量表出集pre-SPRV(N),证明一个网的本原可重复向量集是唯一的,并且给出它的一个求解算法.算法首先求出网N变迁扩充网的所有极小T-不变量,由此求得N的一个可重复向量表出集,然后依次考察其中的每一个向量,将其中的多余向量去掉,得出网N的本原可重复向量集.最后算法被实现并用于实例以展示算法性能,相关算法的程序实现可以作为已有Petri网分析工具的一个组件. The Prirnitive Repetitive Vector of a Petri net is an essential structural property. The concept of the presenting set of repetitive vector (pre-SPRV(N)) is proposed in this paper. It is proved that the set of Primitive Repetitive Vector of a net (SPRV(N)) is unique and an algorithrn is proposed to obtain SPRV(N). Firstly, the algorithm obtains all the minimal T-invariants of the transition extended net of a net N and the pre-SPRV(N). Secondly, the vectors in the pre-SPRV(N) are checked one by one and the redundant vectors are eliminated, thus, the SPRV(N) is obtained. Finally, the algorithm is implemented and verified by an example in order that its performance is evaluated. The corresponding procedure can be used as a component of Petri nets analysis tools.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第9期1815-1818,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673053)资助
关键词 PETRI网 本原可重复向量集 算法 Petri nets the set of primitive repetitive vector of a net (SPRV(N)) algorithm
  • 相关文献

参考文献1

二级参考文献7

  • 1J L Peterson.Petri网理论与系统模拟[M].吴哲辉译.徐州:中国矿业大学出版社,1989.
  • 2T Murata. Petri nets:properties,analysis and application [J]. IEEE, 1989, 77(4): 541-579.
  • 3A Bourjij, M Boutayeb, T Cecchin. A Decentralized Approach for Computing Invariants in Large Scale and Interconnected Petri Nets [J]. IEEE, 0-7SO3453-1/1997.
  • 4A Bourjij, M Boutayeb, T Cecchin. On Generating A Basis of Invariants In Petri Nets [J]. IEEE, 0-7803-4053-1/97/1997.
  • 5M Yamauchi, M wakuda, S Taoka, T Watanabe. A Fast and Space-Saving Algorithm for Computing Invariants of Petri Nets [J].. IEEE, 2002.
  • 6J Martinez, M Silva. A Simple and Fast Algorithm to Obtain All Invariants Of a Generalized Petri Nets [J]. Proceedings of Second European Workshop on Application and Theory of Petri Nets, Informatik Fachberichte 52, Springer Publishing Company, Berlin, 1982.
  • 7Maki Takata, Tadashi Matsumoto, Sciichiro Moro. A Direct Method to Derive All Generators of Solutions of a Matrix Equation in a Petri Net · Extended Fourier-Motzkin Method [J]. The 2002 International Technical Conference on Circuits/systems, Computers and Cornmunitions, 2002.

同被引文献106

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部