期刊文献+

神经鞘磷脂合成酶基因沉默对细胞凋亡的影响 被引量:5

Influence of Sphingomyelin Synthase Knockdown on Cell Apoptosis
下载PDF
导出
摘要 以HEK293细胞为模型,利用RNA干扰技术,将神经鞘磷脂合成酶(SMS)的同工酶(SMS1和SMS2)的siRNA分别联合、转染HEK293细胞.通过薄层层析法评价SMS酶活性,同时测神经酰胺(Cer)、卵磷脂(PC)及神经鞘磷脂(SM)的水平,并以流式细胞仪和AnnexinV-FITC、PI双染法检测细胞凋亡.结果显示,与对照组相比,SMS基因沉默后SMS表达水平降低(分别降低17%,20%,49%);SM水平显著性降低(P<0.05);Cer水平显著性升高(P<0.05);TNF-α诱导的凋亡显著性升高[分别为58%(P<0.01),24%(P<0.05),77%(P<0.01)].这些结果提示,SMS基因沉默能降低SM水平并升高Cer水平,明显增加TNF-α诱导的HEK293细胞凋亡.由于SM是动脉粥样硬化形成的独立危险因子,因此本研究有可能为动脉粥样硬化的治疗找到新的靶点和有效途径. HEK293 cells were uesd to investigate the relationship between sphingomyelin synthase (SMS) activity and cell apoptosis. SMSlsiRNA and SMS2siRNA were transfected HEK293 cells, respectively, or simultaneously. SMS activity was monitored by thin layer chromatographic assay. Sphingomyelin, ceramide, and phosphatidylcholine levels were determined by an established method. Cell apoptosis was measured by flow cytomertry. The results show that SMS1 and SMS2 knockdown reduces SMS activity( 17% , 20%, 49%, respectively), sphingomyelin levels were significantly reduced (P 〈0.05 ), ceramide was significantly increased (P 〈 0. 05 ), compared with control group. We then performed cell apoptosis, and found that SMS1, SMS2, and SMS1/SMS2 knockdown significantly induced by TNF-α mediated apoptosis [ 58% ( P 〈 0. 01 ), 24% (P 〈 0. 05 ), 77 % (P 〈 0. 01 ), respectively ], suggesting monitoring SMS activity plays an important role on cell apoptosis, thus may have impact on the development of atherosclerosis.
机构地区 河南大学医学院
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第9期1759-1762,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:30670688) 河南省教育厅项目(批准号:2006180004) 河南大学校内基金(重点理工科)(批准号:04ZDZR010)资助
关键词 神经鞘磷脂合成酶 薄层层析 神经酰胺 神经鞘磷脂 细胞凋亡 Sphingomyelin synthase Thin layer chromatographic Ceramide Sphingomyelin Cells apoptosis
  • 相关文献

参考文献12

  • 1Huitema K. , van den Dikkenberg J. , Brouwers J. F.. EMBO J. [J] , 2004, 23:33-44.
  • 2van der Luit A. H. , Budde M. , Zerp S. , et al.. Biochem. J. [J], 2007, 401 : 541-549.
  • 3Ding Tin-bo, Li Zhi-qiang, Hailemariam Tiruneh, et al.. Journal of Lipid Research [ J ], 2008, 49 : 376-385.
  • 4Separovic D. , Hanada K. , Maitah M. Y. , et al.. Biochem. Biophys. Commun. Res. [J] , 2007, 358:196-202.
  • 5LiZ., Hailemariam T. K., Zhou H., etal.. Biochim. Biophys. Acta[J], 2007, 1771:1186-1194.
  • 6Hojjati M. R., Jiang X. C.. J. Lipid Res. [J], 2006, 47:673-676.
  • 7Preiss J. E. , Loomis C. R. , Bell R. M. , et al.. Methods Enzymol. [J] , 1987, 141 : 294-300.
  • 8Meng A. , Luberto C. , Meier P. , et al.. Cell Res. [J] , 2004, 292:385-392.
  • 9石渊渊,王玉兰,李志强.SMS高表达对细胞内和培养基中SM水平的影响[J].高等学校化学学报,2008,29(10):1982-1985. 被引量:3
  • 10Kolesnick R.. J. Clin. Invest. [J] , 2002, 110:3-8.

二级参考文献17

  • 1Simons K. , Ikonen E.. Nature[J], 1997, 387:569--572.
  • 2Prinetti A. , Chigonlo V. , Prioni S. , et al.. J. Biol. Chem. [J] , 2001, 276:21136--21145.
  • 3Kummerow F. A. , Cook L. S. , Wasowicz E. , et al.. J. Nutr. Biochem. [J], 2001, 12:602--607.
  • 4Jeong T. S. , Schissel S. L. , Tabas I. , et al.. J. Clin. Invest. [J], 1998, 101:905--912.
  • 5Hanada K.. Biochim. Biophys. Acta[J], 2003, 1632:16--30.
  • 6van der Luit A. H. , Budde M. , Zerp S. , et al.. Biochem. [J] , 2007, 401:541--549.
  • 7Schweizer A. , Clausen H. , van Meer G.. J. Biol. Chem. [J], 1994, 269:4035--4041.
  • 8Miro Obradors M. J. , Sillence D. , Howitt S. , et al.. Biochim. Biophys. Acta[J] , 1997, 1359:1--12.
  • 9Li Zhiqiang, Tiruneh K. Hailemariam, Zhou Hongwen, et al.. Biochim. Biophys. Acta[J], 2007, 1771:1186-1194.
  • 10Hojjati M. R., Jiang X. C.. J. Lipid. Res. [J], 2006, 47:673-676.

共引文献2

同被引文献79

  • 1王雄彪.TIL特异抗癌活性的研究[J].免疫学杂志,1993,9(2):133-136. 被引量:2
  • 2王学斌,刘凤莲,李东风,蒋锦昌.体内游离谷氨酰胺的抗氧化作用[J].生物物理学报,2004,20(6):429-433. 被引量:14
  • 3Schlitt A, Blankenberg S, Yan D, von Gizycki H, Buerke M, Werdan K, Bickel C, Lackner KJ, Meyer J, Rupprecht HJ, Jiang XC. Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr Mrtab (Lond) 2006; 3: 5.
  • 4Jeong TS, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang XC. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mam- malian sphingomyelinase. J Clin Invest 1998; 101(4): 905- 912.
  • 5Park TS, Panek RL, Mueller SB, Hanselrnan JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2004; 110(22): 3400-3401.
  • 6Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated transcription factor nuclear factor-Kappa B is present in the atherosclerotic lesion. J Clin Invest 1996; 97(7): 1715-1722.
  • 7Luberto C, Yoo DS, Suidan HS, Bartoli GM, Hannun YA. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40- transformed human fibroblasts. J Biol Chem 2000; 275(19): 14760-14766.
  • 8Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta 1990; 1044(1): 1-12.
  • 9Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. EMBO J 2004; 23(1): 33-44.
  • 10Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem 2006; 281(40): 29421- 29425.

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部