摘要
讨论Stancu-Kantorovich算子在Orlicz空间L*M[0,1]中的饱和性,对于M(μ)∈Δ2,f(x)∈L*M[0,1]证明了:Kn,s(f)-fM=o(1n)f(x)=const;Kn,s(f)-fM=O(1n)f(x)∈SM,其中SM={f(x):存在h(t)∈L*M[0,1]使f(x)=f(12)+∫x1/21t(1-t)∫tkh(u)dudt,这里k为任意实数}.
* M Saturation of Stancu-Kantorovich operators are discussed and the Saturation theorem is given.