期刊文献+

锂离子电池用SnZn/Cu薄膜负极材料的研究 被引量:2

SnZn/Cu Film Anode for Lithium-ion Batteries
原文传递
导出
摘要 合金型锂离子电池负极材料由于容量高、安全性好而备受关注.采用磁控溅射法在铜箔上渡膜制备锡锌薄膜,经热处理后得到合金薄膜电极.薄膜热处理后,表面活性层形成Cu3Sn中间合金.合金薄膜是由尺寸在5μm左右的合金颗粒构成,而合金颗粒则由更小的尺寸在50nm左右微粒组成,该合金薄膜同时具有薄膜、中间合金和纳米结构材料的特征.合金薄膜电极具有较高的充放电容量、良好的循环性能和非常高的充放电效率.在0.01~1.0V(vs.Li/Li+)区间,电极循环200周后放电容量保持在300mAh·g-1以上,与第一次脱锂容量相比较,容量保持率高达91.9%,充放电效率大于98.0%. Alloy negative materials for Li-ion batteries have been focused on because of high specific capacity and safety, which would be a promising material for next generation Li-ion batteries. In this work, alloy film anode has been prepared by depositing SnZn on Cu foil with a magnetron sputtering method, followed by heat-treatment. A Cu3Sn intermetallic composite was formed after the heat-treatment. The SEM result showed that the alloy film was composed of alloy particles with the size of around 5 ~tm, and the alloy particle was composed of smaller particles with size of around 50 nm. The alloy film anode showed high charge-discharge capacity and columbic efficiency, and good cyclic stability. At potential of 0.01 -1.0 V (vs. Li/Li^+), the discharge capacity remained over 300 mAh·g^-1 after 200 cycles, and the columbic efficiency was over 98.0%. These results should be attributed to the unique structure of the alloy film anode composed of intermetallic composite, thin film and nano-sized active material.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第16期1865-1868,共4页 Acta Chimica Sinica
基金 国家自然科学基金(No20506024) 973计划项目前期研究专项(No2007CB216409) 浙江工业大学国家重点实验室培育基地开放基金资助项目
关键词 锂离子电池 负极材料 磁控溅射 薄膜 Li-ion battery negative material magnetron sputtering tin film
  • 相关文献

参考文献13

  • 1Mukaibo, H.; Momma, T.; Osaka, T. J. Power Sources 2005, 146, 457.
  • 2Bang, B.; Kim, M. H.; Moon, A. S.; Lee, Y. K.; Park, J. W. J. Power Sources 2006, 156, 604.
  • 3Koichi, U.; Keigo, Y.; Kohei, I.; Takuto, M.; Ken, T.; Masayuki, I.; Kunihiro, W.; Nobuyuki, K. J. Power Sources 2008, 183, 347.
  • 4Zhao, H. L.; Zhu, Z. M.; Yin, C. L.; Guo, H.; Dickon, H. L. N. Mater. Chem. Phys. 2008, 110, 201.
  • 5Wu, X. D.; Li, H.; Chen, L. Q.; Huang, X. J. Solid State Ionics 20112, 149, 185.
  • 6Li, Y.; Tu, J. P.; Shi, D. Q.; Huang, X. H.; Wu, H. M.; Yuan, Y. F.; Zhao, X. B. J. Alloys Compd. 2007, 436, 290.
  • 7Wang, F.; Zhao, M. S.; Song, X. P. J. Alloys Compd. 2007, 439, 249.
  • 8Ferguson, P. P.; Todd, A. D. W.; Dahn, J. R. Electrochem. Commun. 2008, 10, 25.
  • 9Zhao, L. Z.; Hu, S. J.; Ru, Q.; Li, Q. S.; Hou, X. H.; Zeng, R. H.; Lu, D. S. J. Power Sources 2008, 183, 347.
  • 10Kim, Y. L.; Lee, H. Y.; Jang, S. W., Jang, S. W.; Lee, S. J. Solid State lonics 2003, 160, 235.

二级参考文献15

  • 1Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395.
  • 2Nam, S. C.; Yoon, Y. S.; Cho, W. I.; Cho, B. W.; Chun, H.S.; Yun, K. S. J. Electrochem. Soc. 2001, 148, A220.
  • 3Tamura, N.; Ohshita, R.; Fujimoto, M.; Kamino, M.; Fujitani, S.J. Electrochem. Soc. 2003, 150, A679.
  • 4Wang, L. B.; Kitamura, S.; Sonoda, T.; Obata, K.; Tanase,S.; Sakai, T. J. Electrochem. Soc. 2003, 150, A1346.
  • 5Pu, W. H.; He, X. M.; Ren, J. G.; Wan, C. R.; Jiang, C. G.Electrochim. Acta 2005, 50, 4140.
  • 6Chen, W. X.; Lee, J. Y.; Liu, Z. L. Carbon 2003, 41,959.
  • 7Wu, X. D.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Carbon 2004, 42, 1965.
  • 8Guo, Z. P.; Zhao, Z. W.; Liu, H. K.; Dou, S. X. Carbon 2005, 43, 1392.
  • 9Xie, J.; Zhao, X. B.; Cao, G. S.; Zhao, M. J. Electrochim.Acta 2005, 50, 2725.
  • 10Courtney, I. A.; Tse, J. S.; Hanfner, J.; Dahn, J. R. Phys.Rev. B 1998, 58, 583.

共引文献10

同被引文献35

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部