期刊文献+

最小冰聚体结构单元模型及其对水性质影响的量化分析

Simulation of Minimum Ice Structural Unit and Quantitative Analysis of Its Effect on Water Properties
原文传递
导出
摘要 水的一些奇特性质主要源于水分子之间存在的氢键,但在分子尺度上的氢键结构和数据仍是目前研究和争论的焦点.统计分析了目前文献中普遍采用的水分子和氢键结构数据,并在此基础上应用AutoCAD图形软件模拟出(H2O)10结构的最小冰聚体结构单元(Minimum Ice Structural Unit,MISU)模型,以及由MISU聚合而成的冰晶体三维模型.根据MISU模型,可以计算得到冰在0℃融化为水、水由0℃加热至100℃、水在100℃汽化为水蒸气的三相转化过程中分别需要吸收5.86,4.40和24.94kJ·mol-1的能量以断裂16.7%,12.5%和70.8%的氢键.如若不考虑氢键的影响,那么计算得到水的融化热和汽化热分别为0.15和15.73kJ·mol-1,与VIA族氢化物H2S,H2Se,H2Te的融化热和汽化热基本呈线性关系.另外,由MISU模型计算得到冰在0℃融化为水时,密度由923.17kg·m-3增至999.89kg·m-3,亦与实际测量数据基本一致. Based on the collection and selection of the parameters of water molecules and hydrogen bonds, configurations of a minimum ice structure unit (MISU) and ice crystal were simulated step by step thanks for the AutoCAD software. The simulation indicates that a minimum ice structure unit is made up of 10 H2O molecules in a four-hexagon cage structure. Based on the simulation, 1 mole of ice crystal contains 2 mole of hydrogen bonds, and 16.7% of hydrogen bonds (5.86 kJom·l^-1), 12.5% of hydrogen bonds (4.40 kJom·l^-1) and 70.8% of hydrogen bonds (24.94 kJom·l^-1) should be broken during the processes of ice fusion at 0 ℃, watercalefaction from 0 to 100 ℃, and water vaporization at 100 ℃. The fusion and vaporization enthalpy values of water are 0.15 and 15.73 kJom·l^-1 respectively, which are consistent with the values of hydrides of Group VIA (H2O, H2S, H2Se, H2Te). Density of ice 923.17 kg·m^-3 increased to that of water 999.89 kg·m^-3 during ice fusion at 0 ℃, which could also be calculated based on the MISU simulation.
作者 彭昌盛
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第16期1936-1942,共7页 Acta Chimica Sinica
基金 教育部留学回国科研启动基金(No2006-331) 教育部新世纪人才计划(NoNCET-08-0508)资助项目
关键词 最小冰聚体结构单元(MISU) 氢键 模拟 量化分析 minimum ice structural unit (MISU) hydrogen bond simulation quantitative analysis
  • 相关文献

参考文献27

  • 1Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997, pp. 1 -9.
  • 2McMurry, J.; Fay, R. C. Chemistry, Prentice Hall, New Jersey, 2001, pp. 392-397.
  • 3Tro, N. J. Introductory Chemistry, Prentice Education, New Jersey, 2003, p. 427.
  • 4Burns, R. A. Fundamentals of Chemistry, Prentice-Hall, New Jersey, 2004, p. 382.
  • 5Olmsted, J. A.; Williams, G. M. Chemistry, John Wiley & Sons, New York, 2002, p. 372, p. 450.
  • 6Spencer, J. N.; Bodner, G. M.; Rickard, L. H. Chemistry: Structure and Dynamics, John Wiley & Sons, New York, 2003, p. 318.
  • 7Isaacs, E. D.; Shukla, A.; Platzman, P. M. J. Phys. Chem. Solids 2000, 61,403.
  • 8Guo, J. H.; Luo, Y.; Augustsson, A. Phys. Rev. Lett. 2002, 89, 137402.
  • 9Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M. Science 2004, 304, 995.
  • 10Smith, J. D.; Cappa, C. D.; Wilson, K. R. Science 2004, 306, 851.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部