期刊文献+

一类p叶解析函数的邻域与部分和 被引量:2

NEIGHBORHOODS AND PARTIAL SUMS OF CERTAIN CLASSES OF p-VALENT ANALYTIC FUNCTIONS
下载PDF
导出
摘要 本文研究了单位圆内解析的p叶函数类Sn*+p-1(η;A,B).利用邻域概念,得到了函数f(z)的邻域与函数类Sn*+p-1(η;A,B)的一些包含关系以及函数f(z)的部分和性质. The article study the subclass Sn+p-1^*(η;A,B) of p_ valent analytic functions in the open unit disk. By using the concept of neighborhoods, we obtain the inclusion relations of neighborhoods of function f(z) and the subclass Sn+p-1^*(η;A,B) , some properties of partial sums of analytic function are also considered .
出处 《数学杂志》 CSCD 北大核心 2009年第5期635-642,共8页 Journal of Mathematics
基金 江苏省高校自然科学基金资助项目(04KJB110154)
关键词 P叶解析函数 超几何函数 解析函数邻域 部分和 p- valent analytic functions hypergeometric function: neighborhood of analytic functions partial sums
  • 相关文献

同被引文献19

  • 1Fekete M, Szego G. Eine bermerkung uberungerade schlichte functionen[J]. J. London Math. Soc., 1933, 8: 85-89.
  • 2Ma W, Minda D. A unified treatment of some special classes of univalent functions[C]. Li Z, Ren F, Yang L, Zhang S, eds. Proceedings of the conference on complex analysis[A]. Beijing: International Press Inc., 1994, 157-169.
  • 3Shanmugam T N, Sivsubramanian S. On the fekete-szego problem for some subclasses of analytic functions[J]. J. Inequal. Pure and Appl. Math., 2005, 6(3): 1-6.
  • 4Dziok J, Srivastava H M. Classes of analytic functions associated with the generalized hypergeo- metric function[J]. Appl. Math. Comput., 1999, 103: 1-13.
  • 5Ruscheweyh S. New criteria for univalent functions[J]. Proc. Amer. Math. Soc., 1975, 49:.109-115.
  • 6Cho N E, Srivastava H M. Argument estimates of certain analytic functions defined by a class of multiplier transformations[J]. Math. Comput. Modelling, 2003, 37: 39-49.
  • 7Murugusundaramoorthy G, Kavitha S, Thomas Rosy. On the fekete-szeg5 problem for some sub- classes of analytic functions defined by convolution[J]. Proc. Pakistan Acad. Sci., 2007, 44(4): 249- 254.
  • 8Ravichandran V, Metin Bolcal, Yasar Polatoglu, Sen A. Certain subclasses of starlike and convex functions of complex order[J]. Hacettepe Journal of Mathematics and Statistics, 2005, 34: 9-15.
  • 9Pommernke C H. Univalent functions[M]. Gottingen: Vandehoeck and Ruprecht, 1975.
  • 10Ramachandran C, Sivasubramanian S, Srivastava H M, Swaminathan A. Coefficient inequalities for certain subclasses of analytic functions and their applications involving the Owa-Srivastava operator of fractional calculus[J]. Math. Ineq. Appl., 2009, 12(2): 351-363.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部