期刊文献+

基于K-L变换和支持向量机的三维肺结节识别 被引量:1

Recognition of 3-D Lung Nodules Based on K-L Transform and Support Vector Machine
下载PDF
导出
摘要 针对传统二维结节感兴趣区的特征提取忽略了肺结节在三维空间的细部特征问题,提出了一种基于K-L变换和支持向量机(SVM)的肺结节识别新方法.首先对三维肺结节的几何特征和密度特征进行分析,计算并提取三维特征形成原始特征空间,然后使用K-L变换方法进行原始空间变换,去除特征间相关性,最后采用支持向量机分类方法来进行肺结节识别,并引入ROC曲线对算法性能进行评价.实验针对36组具有临床标注"金标准"的肺部HRCT数据进行,结果表明该方法的识别准确率可以达到94.33%,ROC曲线的Az值为0.94. Based on the K-L transform and support vector machine, a new recognition algorithm for the 3-D lung nodule was presented to solve the problem that the details of lung nodule were often ignored in the 3-D space when extracting the characteristics of lung nodule in the interested area by the conventional 2-D method. The geometry and intensity features of lung nodule were analyzed and the 3-D features were calculated and extracted to form an original feature space. Then, the K-L transform method was used to exclude the correlativity between features, and the support vector machine (SVM) was introduced to categorize and recognize the potential lung nodules with the receiver operating characteristic (ROC) curve introduced to evaluated the performance of the algorithm proposed. A test involving 36 sets of clinical lung HRCT data was carried out, where the lung nodules were marked with 'golden standard'. The results indicated that the validity of the algorithm or the accuracy of recognition is up to 94.33 % and the value of Az(area under the ROC curve) is 0.94.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期1249-1252,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60671050)
关键词 K-L变换 支持向量机 三维肺结节 特征选择 ROC曲线 K-L transform support vector machine(SVM) 3-D lung nodule feature selection ROC curve
  • 相关文献

参考文献11

  • 1Dajnowiec M, Alirezaie J, Babyn P. An adaptive rule based automatic lung nodule detection system [ C]//ICAPR 2005. Berlin:Springer-Verlag, 2005:773 - 782.
  • 2Aly F, Aymun E B, Gimel'Jurb G, et al. Detection and recognition of lung nodules in spiral CT images using deformable templates and Bayesian post-classification [ C ]// International Conference on Image Processing. Piscataway: ETATS-UNIS, 2004 : 2921 - 2924.
  • 3Kenji S, Li F, Sone S, et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network [ J ]. IEEE Transactions on Medical Imaging, 2005,24(9) : 1138 - 1150.
  • 4Kenji S, Jtmji S, Hiroyuki A, et al. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network[J ]. Academic Radiology, 2005,12 (2) : 191 - 201.
  • 5Dehmeshki J, Chen J, Casique M V, et al. Classification of lung data by sampling and support vector machine [ J ]. Engineering in Medicine and Biology Society, 2004,2: 3194 - 3197.
  • 6Cotes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995,20(3) :273 - 295.
  • 7William J K, Anthony P R, David F Y, et al. Three- dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [ J ]. IEEE Transactions on Medical Imaging, 2003,22 ( 10 ) : 1259 - 1274.
  • 8魏颖,徐心和,贾同,赵大哲.基于多尺度形态学滤波的CT图像疑似肺结节提取[J].东北大学学报(自然科学版),2008,29(3):312-315. 被引量:6
  • 9Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two-and three- dimensional CT scans[J]. Med Phys, 2003,30(8) :2040 - 2051.
  • 10Wail A H M, Mohammad A U K. Lung nodule classification utilizing support vector machines [ J ]. International Conference on Image Processing, 2002,3 : 153 - 156.

二级参考文献10

  • 1Shinji Y. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT[J]. System and Computers in Japan, 2005,36(7) :40 - 53.
  • 2Li Q. Recent progress in computer-aided diagnosis of lung nodules on thin-section CT[ J ]. Computerized Medical Imaging and Graphics, 2007,31 (3) : 248 - 257,
  • 3Okumura T, Miwa T, Kako J, et al. Automatic detection of lung cancers in chest CT images by variable N-quoit filter[C]// The Fourteenth International Conference on Patern Recognition. Brisbane: IEEE Computer Society Press, 1998:1671 - 1673.
  • 4Wiemker R , Zwarkruis A. Optimal thresholding for 3D segmentation of pulmonary nodules in high resolution CT [J]. International Congress Series, Elsevier Science, 2001,1230:653 - 658.
  • 5McCulloch C C, Kaucic R A, Mendonca P R S. Model-based detection of lung nodules in computed tomography exams[J ]. Academic Radiology, 2004,11(3) :258 - 266.
  • 6Lee Y, Hara T, Fujita H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique [J ]. IEEE Transactions on Medical Imaging, 2001,20(7) : 595 - 604.
  • 7Hidetaka A, Shigehiko K. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening[J]. Academic Radiology, 2004,11(6) :617 - 629.
  • 8Lin D T, Yan C R, Chen W T. Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system [ J ]. Computerized Medical Imaging and Graphics, 2005,29(6) :447 - 458.
  • 9Kenji S, Armato S, Li F, et al. Massive training artificial neural network(MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography[J ]. Medical Physics, 2003,30 ( 11 ) : 1602 - 1617.
  • 10崔屹.图像处理和分析-数学形态学方法及其应用[M].北京:科学出版社,2000:1-50.

共引文献5

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部