期刊文献+

基于BP网络的火力发电厂锅炉管壁温度预测研究 被引量:3

Research of Thermal Power Plant Boiler Wall Temperature Forecast Based on BP
下载PDF
导出
摘要 锅炉管壁超温现象的存在严重影响了锅炉的安全及可靠性。在对BP神经网络简介的基础上,详细研究了基于BP的锅炉管壁温度预测的数字模型,并通过应用样本的获取,分析BP神经网络在锅炉管壁温度预测方面的设计、不足及具体的参数选择,从而降低了火力发电厂锅炉管壁超温情况的发生,延长了锅炉的使用寿命。 Over-temperature boiler wall of the existence of the phenomenon has seriously affected the safety and reliability of the boiler. In this paper, BP neural network in the Introduction, based on a detailed study of BP based on the temperature of the boiler wall forecast model, and through the application of sample acquisition, analysis of BP neural network prediction of temperature in the boiler wall design, and lack of specific choice of parameters, thereby reducing the over-temperature thermal power plant boiler wall from happening, to extend the life of the boiler.
作者 王鹏
出处 《软件导刊》 2009年第9期79-81,共3页 Software Guide
关键词 神经网络 管壁超温 温度预测 Neural Network Wall Over-temperature Temperature Prediction
  • 相关文献

同被引文献29

  • 1王锋.数据挖掘在电厂锅炉管壁超温分析中的应用[J].电力信息化,2006,4(10):76-78. 被引量:3
  • 2Sun J, Rahman M, Wong Y S, et al. Multiclassifica-tion of tool wear with support vector machine by manufacturingloss consideration[J]. International Journal of Machine Tools andManufacture,2004,44(11):1179-1187.
  • 3Choudhury S K,Jain V K, Rama Rao C V V. On-linemonitoring of tool wear in turning using a neural network[J]. In-ternational Journal of Machine Tools and Manufacture,1999,39(3):489-504.
  • 4Wang G,Yang Y,Guo Z. Hybrid learning based Gaussi-an ARTMAP network for tool condition monitoring using selectedforce harmonic features[J]. Sensors and Actuators A:Physical,2013,203:394-404.
  • 5Ricardo V, Youssef D. A perspective view and surveyof meta-learning[J]. Artificial Intelligence Review,2002,8(2):77-95.
  • 6Vapnik V. The nature of statistical learning theory[M]. Springer Science & Business Media,2000.
  • 7Wolpert D H. Stackedgeneralization[J]. Neural Net-works,1992(5):241-259.
  • 8He X, Yan S, Hu Y, et al. Learning a locality preser-ving subspace for visual recognition[C]∥Computer Vision,2003,Proceedings. Ninth IEEE International Conference on. IEEE,2003:385-392.
  • 9叶善佩,王春昌.珠海发电厂锅炉高温受热面管壁超温问题试验研究及解决方案[J].热力发电,2010,39(1):49-51. 被引量:6
  • 10刘锐,王玫,陈勇.基于优选特征的刀具磨损监测方法[J].组合机床与自动化加工技术,2010(3):59-61. 被引量:3

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部