期刊文献+

基于多特征Mean Shift的人脸跟踪算法 被引量:10

A Face Tracking Algorithm Based on Multiple Feature Mean Shift
下载PDF
导出
摘要 该文把局部三值模式(Local Ternary Patterns,LTP)纹理特征引入MeanShift跟踪算法,提出了基于多特征的Mean Shift人脸跟踪算法以解决Mean shift跟踪算法的鲁棒性问题。通过对LTP纹理特征的分析、研究,提出了一个LTP关键纹理模型,既增强了目标的关键纹理信息,又简化了LTP纹理模型。在此基础上,提出一种基于LTP关键纹理特征和肤色特征的Mean Shift人脸跟踪算法,有效地解决了Mean Shift算法的鲁棒性问题。为进一步提高对快速运动目标的跟踪速度和跟踪性能,该文引入了卡尔曼滤波器对目标进行预测。实验结果表明,该文的算法在目标定位的准确性和跟踪性能上比Mean Shift算法均有明显的提高。 In this paper, an improved Mean Shift face tracking algorithm based on Local Ternary Patterns (LTP) of texture and color features is proposed to improve the robustness of the Mean Shift algorithm. Based on the study of LTP texture features, an LTP key texture pattern is introduced to enhance the important features of an object and reduce the computational complexity of the LPT texture model. A multiple feature Mean Shift face tracking algorithm is then proposed based on the LTP key texture and complexion features, and the robustness of Mean Shift algorithm is significantly enhanced. Furthermore, in order to improve the tracking speed and robustness, the Kalman filter is introduced to predict the position of the object window. Experimental results show that compared with the original Mean Shift algorithm, the proposed multiple feature face tracking algorithm has significantly improved the tracking performance.
作者 张涛 蔡灿辉
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第8期1816-1820,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772164) 福建省自然科学基金(A0710009) 福建省科技计划项目(2005H034)资助课题
关键词 人脸跟踪 卡尔曼滤波 Mean SHIFT算法 局部三值模式 Face tracking Kalman filter Mean Shift algorithm Local Ternary Patterns (LTP)
  • 相关文献

参考文献13

  • 1Comaniciu D,Ramesh V,and Meer P.Real time tracking of non-rigid objects using mean shift[C].Computer Vision and Pattern Recognition,Hilton Head Island,SC,USA,Jun.13-15,2000,Vol.2:142-149.
  • 2Wu Y and Huang T S.Robust visual tracking by integrating multiple cues based on co-inference learning[J].International Journal of Computer Vision,2004,58(1):55-71.
  • 3Triesch J and Von der Malsburg C.Self-organized integration of adaptive visual cues for face tracking[C].Automatic Face and Gesture Recognition,Grenoble,France,Mar.28-30,2000:102-107.
  • 4Xu X and Li B.Head tracking using particle filter with intensity gradient and color histogram[C].Conference on Multimedia and Expo,Amsterdam,Netherlands,Jul.6-9,2005:888-891.
  • 5Ojala T,Pietikainen M,and Harwood D.A comparative study of texture measures with classification based on feature distribution[J].Pattern Recognition,1996,29(1):51-59.
  • 6Nguyen Q A,Antonio R K,and Shen C H.Enhancedkernel-based tracking for monochromatic and thermographicvideo[C].Advanced Video and Signal Based Surveillance,Sydney,Australia,Nov.11,2006:28.
  • 7王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 8宁纪锋,吴成柯.一种基于纹理模型的Mean Shift目标跟踪算法[J].模式识别与人工智能,2007,20(5):612-618. 被引量:21
  • 9Tan X Y and Bill T.Enhanced local texture feature sets for face recognition under difficult lighting conditions[C].Analysis and Modeling of Faces and Gestures,Rio de Janeiro,Brazil,Oct.20,2007:168-182.
  • 10Comaniciu D,Ramesh V,and Meer P.Kernel-based object tracking[J].Pattern Analysis and Machine Intelligence,2003,25(5):564-577.

二级参考文献25

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2贾静平,张艳宁,柴艳妹,赵荣椿.目标多自由度Mean Shift序列图像跟踪算法[J].西北工业大学学报,2005,23(5):618-622. 被引量:8
  • 3Comaniciu D, Ramesh V, Meer P, Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 4Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5Zhu Zhiwei, Ji Qiang. Robust Real-Time Eye Detection and Tracking under Variable Lighting Conditions and Various Face Orientations. Computer Vision and Image Understanding, 2005, 98(1): 124-154.
  • 6Charay L, Mohamed A. Tracking Multiple People with Recovery from Partial and Total Occlusion. Pattern Recognition, 2005, 38(7): 1059-1070.
  • 7Haritaoglu I, Flickner M. Detection and Tracking of Shopping Groups in Stores// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA, 2001, I : 431-438.
  • 8Ojala T, Valkealahti K, Oja E, et al. Texture Discrimination with Multi- Dimensional Distributions of Signed Gray Level Differences. Pattern Recognition, 2001, 34(3): 727-739.
  • 9Ojala T, Pietikainen M, Maenpaa T. Multiresolution GrayScale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 10Heikkila M, Pietikainen M, A Texture-Based Method for Modeling the Background and Detecting Moving Objects. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 (4) : 657-662.

共引文献74

同被引文献146

引证文献10

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部