期刊文献+

模拟化学反应系统的快速无偏τ-Leap算法 被引量:1

EFFICIENT UNBIASED τ-LEAP METHODS FOR SIMULATING COUPLED CHEMICAL REACTIONS
原文传递
导出
摘要 化学反应系统中的Leap算法可在获得较好精度的同时大幅提高模拟速度,最近提出的无偏Leap方法有效地克服了由Leap时间区间内的反应次数的近似均值与真实均值之间的偏差引起的Leap算法的误差的不足,本文讨论了一个基于物种相对改变估计真实均值的快速无偏τ-Leap算法,并将该算法推广到模拟时滞化学系统中.该快速算法具有易于编码、比前者更快等优点,当系统中的反应通道或物种的数目较大时,该方法具有更明显的速度优势。 The leap algorithms significantly accelerate stochastic simulation of chemically reacting systems with some acceptable losses by considering the leap condition. Recently, the unbiased leap methods are considered to overcome the deficiency appears in leap algorithms, in which the means of reaction numbers during a leap are not equal to the true ones. In this paper an efficient version of the unbiased γ-leap method is proposed by considering the relative changes of species to calculate true means. Further, this algorithm is extent to chemically reacting systems with delays. The new algorithms are easier to code, and faster to execute than the former. The speed-up in execution will be especially pronounced in systems that have many reaction channels or species.
出处 《计算数学》 CSCD 北大核心 2009年第3期309-322,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(30571059) 国家高科技研究发展计划(863)专项资助项目(2006AA02Z190) 上海市重点学科资助(S30405) 上海师范大学校级项目(SK200937)
关键词 化学反应系统 Leap算法 快速无偏γ-Leap算法 快速无偏时滞 γ-Leap算法 chemically reacting systems leap algorithms efficient unbiased γ-leap (EUTL)method efficient unbiased delay γ-leap (EUDTL) method
  • 相关文献

参考文献3

二级参考文献45

  • 1Kaern M, et al. Stochasticity in gene expression: from theories to phenotypes. Nat Tev Genet, 2005, 6:451 - 464.
  • 2Ideker T, Galitski T and Hood L. A new approach to decoding life.. systems biology. Annu Tev Genom Human Genet, 2001, 2:343 - 372.
  • 3Gillespie DT. A rigorous derivation of the chemical master equation.Physics A, 1992, 188:404.
  • 4Gillespie DT. General method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys, 1976, 22:403 -434.
  • 5Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Chem Phys, 1977, 81:2340-2361.
  • 6Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys, 2001, 115:1716 - 1733.
  • 7Gillespie DT and Petzold LR. Improved leap-size selection for accelerated stochastic simulation. J Chem Phys, 2003, 119: 8229- 8234.
  • 8Tian TH and Burrage K. Binomial leap methods for simulating stochastic chemical kinetics. J Chem Phys, 2004, 121 : 10356 - 10364.
  • 9Cai XD and Xu ZY. K-Leap method for accelerating stochastic simulation of coupled chemical reactions. J Chem Phys, 2007, 126: 074102.
  • 10Auger A, Chatelain P and Koumoutsakos P. R-Leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J Chem Phys, 2006, 125:084103.

共引文献3

同被引文献68

  • 1侯中怀,辛厚文.介观化学体系中的动力学尺度效应[J].化学进展,2006,18(2):142-158. 被引量:1
  • 2Gillespie D T. J. Comput. Phys., 1976, 22: 403-434.
  • 3Gillespie D T. J. Phys. Chem., 1977, 81(25): 2340-2361.
  • 4Gillespie D T. J. Chem. Phys., 2001, 115(4): 1716-1733.
  • 5Gillespie D T. J. Chem. Phys., 2000, 113(1): 297-306.
  • 6Gillespie D T. Annu. Rev. Phys. Chem., 2007, 58: 35-55.
  • 7Gibson M A, Bruck J. J. Phys. Chem. A, 2000, 104(9): 1876-1889.
  • 8Cao Y, Li H, Petzold L R. J. Chem. Phys., 2004, 121(9): 4059-4067.
  • 9McCollum J M, Peterson G D, Cox C D, Simpson M L, Samatova N F. Comput. Bio. Chem., 2006, 30(1): 39-49.
  • 10Li H, Petzold L. Logarithmic direct method for discrete stochastic simulation of chemically reacting systems. Technical report, Department of Computer Science, University of California: Santa Barbara, 2006. http: //www. engr. ucsb. edu~cse[2012-06-30].

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部