期刊文献+

组合法优化Ti掺杂Zn-Al合金薄膜的耐腐蚀性能(英文) 被引量:3

Combinatorial Optimization for the Anti-Corrosion Properties of Ti Doped Zn-Al Alloy Films
下载PDF
导出
摘要 应用组合技术,通过离子束溅射法制备了Zn-Al-Ti合金薄膜材料芯片(其中wAl∶wZn=55%∶45%(w,质量分数)),表征了热处理后薄膜的耐腐蚀性能,研究了Ti掺杂量对薄膜耐腐蚀性能的影响.在Ar+5%(φ,体积分数)H2混合气氛中,经200℃扩散1h,再经370℃热处理2h后可以得到高质量的合金薄膜.通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别对热处理后的典型样品进行相结构和形貌表征.使用电化学方法测试样品的耐腐蚀性能.结果表明,Ti适量掺杂样品的腐蚀速率明显下降,其中Ti掺杂量为6.0%(w)的Zn-Al-Ti合金薄膜(94.0%(w)Zn-Al,其中wAl∶wZn=55%∶45%)具有最优异的耐腐蚀性能,其原因在于,Ti适量掺入后晶粒明显细化,表面更为致密,且钝化作用增强. A Zn-Al-Ti material chip was fabricated by combinatorial technology using an ion beam sputtering method. The anti-corrosion properties of the Zn-Al alloy film and Ti doping effects on its corrosion resistance were investigated. High quality alloy films were obtained using low-temperature diffusion at 200 ℃ for 1 h combined with high-temperature crystallization at 370℃ for 2 h in Ar+5% (φ volume fraction) H2 atmosphere. X-ray diffraction (XRD) and scanning electron microscope (SEM) were also used to characterize the structure and surface morphology of typical samples. The anti-corrosion behavior of samples was studied by electrochemical methods. Results indicated that the corrosion rate decreased markedly when a small amount of Ti was doped in the Zn-Al binary compositions. The Zn-Al- Ti alloy film doped with 6.0% (w, mass fraction) Ti (94.0% (w) Zn-Al with WAl:WZn=55%:45% showed the best anticorrosion behavior mainly because the small amount of Ti dopant developed fine grains, made the surface denser, and enhanced its passivation behavior.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第9期1763-1768,共6页 Acta Physico-Chimica Sinica
基金 supported by the Science and Technology Commission of Shanghai Municipal Government, China (055211005) Program of Shanghai Institute of Ceramics, Chinese Academy of Sciences (SCX200707)~~
关键词 钛掺杂 锌铝合金薄膜 耐腐蚀 组合法 Titanium doping Zn-Al alloy film Anti-corrosion Combinatorial method
  • 相关文献

参考文献31

  • 1Vourlias, G.; Pistofidis, N.; Chrissafis, K. J. Therm. Anal. Calorim., 2007, 90:769.
  • 2Vourlias, G.; Pistofidis, N.; Chaliampalias, D.; Pavlidou, E.; Patsalas, P.; Stergioudis, G.; Tsipas, D.; Polychroniadis, E. K. Surf. Coat. Technol., 2006, 200:6594.
  • 3王云坤,宋东明.浅述热浸锌镀层的结构及性能[J].金属世界,2007(6):47-52. 被引量:10
  • 4Fratesi, R.; Roventi, G. Surf. Coat. Technol., 1996, 82:158.
  • 5Kim, H. S.; Popov, B. N.; Chen, K. S. Corrosion Sci., 2003, 45: 1505.
  • 6吴勇,李汉春,李春燕.高耐蚀无污染锌铬涂层技术及其应用[J].材料保护,2002,35(5):47-49. 被引量:2
  • 7章小鸽.锌和锌合金的腐蚀(一)[J].腐蚀与防护,2006,27(1):41-50. 被引量:32
  • 8Panossian, Z.; Mariaca, L.; Morcillo, M.; Flores, S.; Rocha, J.; Pena, J. J.; Herrera, F.; Corvo, F.; Sanchez, M.; Rincon, O. T.; Pridybailo, G.; Simancas, J. Surf. Coat. Technol., 2005, 190:244.
  • 9Baker, M. A.; Gissler, W.; Klose, S.; Trampert, M.; Weber, F. Surf. Coat. Technol., 2000, 125:207.
  • 10Pistofidis, N.; Vourlias, G.; Pavlidou, E. J. Optoelectron. Adv. Mater., 2007, 6:1653.

二级参考文献37

共引文献44

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部