期刊文献+

利用牛血清蛋白合成CdS纳米棒和网状纳米线 被引量:4

Syntheses of Cadmium Sulfide Nanorods and Network Nanowires by Bovine Serum Albumin
下载PDF
导出
摘要 采用简单易控、对环境友好的矿化方法,利用牛血清蛋白(BSA)做模板,通过Cd2+与硫代乙酰胺(TAA)反应制备了形貌均一的CdS纳米棒和网状纳米线.分别采用透射电子显微镜(TEM)、X射线能谱(EDS)、X射线衍射(XRD)、荧光(PL)发射谱和导电原子力显微镜(C-AFM)等方法对不同实验温度下制备的CdS样品的结构形貌、成分组成和光学性质及微区电子传输行为进行了表征.结果表明:在实验反应温度为20℃时,得到的产物为单分散性好的CdS纳米棒,长度为250nm,直径为30nm;在50℃时,得到网状CdS纳米线,其长度为2-3μm;CdS纳米棒和网状纳米线均为立方相闪锌矿结构.荧光性质的测试表明,CdS纳米棒和网状纳米线具有优良的荧光性能,电流-电压(I-V)特性的表征表明CdS纳米线具有很好的电导特性. Highly ordered CdS nanorods and network nanowires were prapared by reacting cadmium ions with thioacetamide (TAA) using bovine serum albumin (BSA) as a biomineralization template with a facile and environmentally benign biomineralization method. The morphology, elemental composition, optical property, and microelectronic transmission behavior of the samples synthesized at different reaction temperatures were characterized by means of transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL) emission spectroscopy, and conductivity-atomic force microscopy (C-AFM). Results showed that when the experimental temperature was 20 ℃, monodispersed CdS nanorods with sizes of about 30 nm in diameter and 250 nrn in length were obtained; and at 50 ℃, a network of CdS nanowires of about 2-3μm in length were fabricated. CdS nanorods and nanowires showed a cubic zinc blended structure. Characterization of their fluorescence property showed that CdS nanorods and nanowires had excellent fluorescence. Moreover, characterization of their current-voltage (I-V) characteristics showed that CdS nanowires had good conductivity.
机构地区 河南大学
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第9期1769-1774,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20871041) 教育部科学技术研究重点项目(208086)资助~~
关键词 纳米棒 CDS 网状纳米线 牛血清蛋白 荧光 电流-电压特性 Nanorods Cadmium sulfide Network nanowires Bovine serum albumin Fluorescence Current-voltage characteristics
  • 相关文献

参考文献53

  • 1Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science, 2002, 295:1506.
  • 2Steckel, J. S.; Coe-Sullivan, S.; Bulovic, V.; Bawendi, M. G. Adv. Mater., 2003, 15:1862.
  • 3Pan, A. L.; Liu, D.; Liu, R. B.; Wang, F. F.; Zhu, X.; Zou, B. S.Small, 2005, 1:980.
  • 4Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science, 1998, 281:2013.
  • 5Chan, W. C. W.; Nie, S. M. Science, 1998, 281:2016.
  • 6Santra, S.; Yang, H.; Holloway, P. H.; Stanley, J. T.; Mericle, R. A. J. Am. Chem. Soc., 2005, 127:1656.
  • 7Sheeney-Haj-Kchia, L.; Wasserman, J.; Willner, I. Adv. Mater., 2002, 14:1323.
  • 8Sheeney-Haj-Khia, L.; Basnar, B.; Willner, I. Angew. Chem. -Int. Ed., 2005, 44:78.
  • 9Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature, 2000, 404:59.
  • 10Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc., 1993, 115:8706.

二级参考文献65

共引文献66

同被引文献236

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部