摘要
研究了效应代数上的态、态射和单同态的一些重要性质和给了它们的刻画;对于可加映射φ:E→F,证明了φ是一个态射当且仅当φ(a′)=(φ(a))′(■a∈E);φ是一个单同态当且仅当φ是反保序的,即φ(a)≤φ(b)■a≤b。最后,证明了:如果(P,≤)是一个偏序集且以0为最小元、1为最大元,φ是从P到[0,1]的一族映射且满足一定条件,则在P上存在部分二元运算⊕,使得(P,0,1,⊕)成为一个效应代数且以φ为一个序决定态系统。
A series of properties of morphisms, monomorphisms and states on an effect algebra are discussed, and characterizations of morphisms and monomorphisms are given. It is proved that if Ф : E →F is additive, then it is morphism if and only if Ф(a') = (Ф(a))' ( a ∈ E); and it is a monomorphism if and only if it is anti-order preserving, i.e., Ф(a) 〈 Ф(b) implies a ≤ b. Finally, it is shown that if (P, ≤) is a partially ordered set with the minimal and maxmual elements 0 and 1, respectively, and if Ф is a family of mappings from P into [0, 1] satisfying some conditions, then there exists a partial binary operation in P such that (P, 0, 1, ) becomes an effect algebra with Ф as an order-determining state system.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第5期957-960,共4页
Acta Mathematica Sinica:Chinese Series
关键词
效应代数
可加映射
态射
effect algebra
additive mapping
morphism