摘要
主要证明了如下两个结论:(1)设f为超越整函数,且零点重数至少为k+2 (k为正整数),E={λ_n}_(n=1)~∞是复平面中的无限点集,满足|λ_(n+1)/λ_n|>q>1,则f^(k)在C\E中取每个非零有限复数b无穷次。(2)设复数序列a_n和正序列ρ_n满足|a_(n+1)/a_n|>q>1,又设f为超越整函数,且零点重数至少为k+2(k为正整数),则对任何b∈C,b≠0, f(k)-b在U_(n=1)~∞B(a_n,ρ_n)之外有无穷多个零点,其中β>1,B(a_n,ρ_n)={z:|z-a_n|<ρ_N}。
In this paper, it be proved : (1) Let f is a transcendental entire function, and have only zeros of order at least k+2, let E={λn}^∞n=1 be an infinite point set in with |λn+1/λn|〉q〉1. Then f^(k) assumes all values w ∈ C, except possibly zero, infinitely often in C / E. (2) Suppose that the complex sequence (αn) and the positive sequence (ρn) satisfy for all n, |αn+1/αn|〉q〉q,log 1/ρn〉q1/4+1(k+3)β(1+o(1))/q1/4-1 logq(log|αn|)^2,(n=1,2,3,...) Then if f is a transcendental entire function, and has only zeros of order at least k+2, the equation f^(k) = b must have infinitely many solutions outside the union of the discs B(an,pn), for any b ≠ 0. Here β〉 1 and B(αn,ρn) = {z: |z- αn| 〈 ρn}.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第5期961-968,共8页
Acta Mathematica Sinica:Chinese Series