期刊文献+

整函数导数的Picard例外集 被引量:1

Picard Sets of Entire Functions and Their Derivatives
原文传递
导出
摘要 主要证明了如下两个结论:(1)设f为超越整函数,且零点重数至少为k+2 (k为正整数),E={λ_n}_(n=1)~∞是复平面中的无限点集,满足|λ_(n+1)/λ_n|>q>1,则f^(k)在C\E中取每个非零有限复数b无穷次。(2)设复数序列a_n和正序列ρ_n满足|a_(n+1)/a_n|>q>1,又设f为超越整函数,且零点重数至少为k+2(k为正整数),则对任何b∈C,b≠0, f(k)-b在U_(n=1)~∞B(a_n,ρ_n)之外有无穷多个零点,其中β>1,B(a_n,ρ_n)={z:|z-a_n|<ρ_N}。 In this paper, it be proved : (1) Let f is a transcendental entire function, and have only zeros of order at least k+2, let E={λn}^∞n=1 be an infinite point set in with |λn+1/λn|〉q〉1. Then f^(k) assumes all values w ∈ C, except possibly zero, infinitely often in C / E. (2) Suppose that the complex sequence (αn) and the positive sequence (ρn) satisfy for all n, |αn+1/αn|〉q〉q,log 1/ρn〉q1/4+1(k+3)β(1+o(1))/q1/4-1 logq(log|αn|)^2,(n=1,2,3,...) Then if f is a transcendental entire function, and has only zeros of order at least k+2, the equation f^(k) = b must have infinitely many solutions outside the union of the discs B(an,pn), for any b ≠ 0. Here β〉 1 and B(αn,ρn) = {z: |z- αn| 〈 ρn}.
作者 王品玲
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2009年第5期961-968,共8页 Acta Mathematica Sinica:Chinese Series
关键词 整函数 导数 Picard例外集 entire function their derivatives Picard sets
  • 相关文献

参考文献8

  • 1Yang L., Value Distribution Theory, Berlin: Springer-Verlaq, 1993.
  • 2Hayman W. K., Picard values of meromorphic function and their derivatives, Ann. of Math., 1959, 70(2): 9-42.
  • 3Clunie J., On a result of Hayman, J. London Math. Soc., 1967, 42: 389-392.
  • 4James M. A., Irvine N. B., James G. C., Distribution of Values of Certain Entire and Meromorphic Function, Math. Z., 1981, 178: 509-525.
  • 5Jame K. L., Analogues of Picard set for entire function and their derivatives, Contemporary Math., 1983, 25: 75-86.
  • 6Chen H. H., Yoshida functionand Picard values of integral funcand derivatives, Bull Austral Math. Soc., 1996, 54: 373-381.
  • 7Hayman W. K., Meromorphic Functions, Oxford: At the Clarendon Press, 1964.
  • 8Ahlfors L. V., Complex Analysis, New York: McGraw-Hill Book Company, 1966.

同被引文献8

  • 1Hayman W K. Picard values of mermorphic function and their derivatives [ J ]. Ann of math, 1959,70 (2) : 9-42.
  • 2Clunie J. On a result of hayman[J]. J London Math Soc, 1967, 42: 389-392.
  • 3Anderson J M, Baker I N, Clunie J G. The distribution of values of certain entire and meromorphic function[ J ]. Math Z, 1981, 178: 509-525.
  • 4Langley J K. Analogues of Picard set for entire function and their derivatives[J]. Contemporary Math, 1983, 25: 75-86.
  • 5Chen H H. Yoshida functions and Picard values of integral functions and their derivatives[ J]. Bull Austral Math Soc, 1996, 54 : 373-381.
  • 6Ahlfors L V. Complex Analysis[ M ]. New York: McGraw-Hill Book Company, 1966.
  • 7詹小平,蔡海涛.亚纯函数的例外集[J].数学学报(中文版),2001,44(4):657-666. 被引量:2
  • 8Wang Yuefei,Fang Mingliang Institute of Mathematics, Academia Sinica, Beijing 100080, China Institute of Mathematics, Academia Sinica, Beijing 100080, China Department of Mathematics, Nanjing Normal University, Nanjing 210097, China.Picard Values and Normal Families of Meromorphic Functions with Multiple Zeros[J].Acta Mathematica Sinica,English Series,1998,14(1):17-26. 被引量:99

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部