期刊文献+

Empirical Likelihood for Mixed-effects Error-in-variables Model 被引量:5

Empirical Likelihood for Mixed-effects Error-in-variables Model
原文传递
导出
摘要 This paper mainly introduces the method of empirical likelihood and its applications on two different models. We discuss the empirical likelihood inference on fixed-effect parameter in mixed-effects model with error-in-variables. We first consider a linear mixed-effects model with measurement errors in both fixed and random effects. We construct the empirical likelihood confidence regions for the fixed-effects parameters and the mean parameters of random-effects. The limiting distribution of the empirical log likelihood ratio at the true parameter is X2p+q, where p, q are dimension of fixed and random effects respectively. Then we discuss empirical likelihood inference in a semi-linear error-in-variable mixed-effects model. Under certain conditions, it is shown that the empirical log likelihood ratio at the true parameter also converges to X2p+q. Simulations illustrate that the proposed confidence region has a coverage probability more closer to the nominal level than normal approximation based confidence region. This paper mainly introduces the method of empirical likelihood and its applications on two different models. We discuss the empirical likelihood inference on fixed-effect parameter in mixed-effects model with error-in-variables. We first consider a linear mixed-effects model with measurement errors in both fixed and random effects. We construct the empirical likelihood confidence regions for the fixed-effects parameters and the mean parameters of random-effects. The limiting distribution of the empirical log likelihood ratio at the true parameter is X2p+q, where p, q are dimension of fixed and random effects respectively. Then we discuss empirical likelihood inference in a semi-linear error-in-variable mixed-effects model. Under certain conditions, it is shown that the empirical log likelihood ratio at the true parameter also converges to X2p+q. Simulations illustrate that the proposed confidence region has a coverage probability more closer to the nominal level than normal approximation based confidence region.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第4期561-578,共18页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.10771017,No.10231030) the Key Project of Ministry of Education(No.309007)
关键词 Confidence region empirical likelihood mixed-effects model Confidence region empirical likelihood mixed-effects model
  • 相关文献

参考文献15

  • 1Azzalini, A. A note on the estimation of a distribution function and quantiles by kernel method. Bimetrika, 68:326-328 (1981).
  • 2Chen, S.X., Cui, H.J. On the second order properties of empirical likelihood with moment restrictions. J. Econometrics,141: 492-516 (2007).
  • 3Chen, S.X., Hall, P. Smoothed empirical likelihood confidence interval for quantiles. Ann. Statist., 21: 1166-1181 (1993).
  • 4Chen, X.R., Wu, Y.H. Consistency of L1 estimates in censored regression models. Communications in Statistics Theory and Methods, 23:1847-1858 (1993).
  • 5Cui, H.J., Ng, Kai W., Zhu, L.X. Estimation in mixed effects model with errors in variables. J. Multivariate Anal., 91:53-73 (2004).
  • 6Cui, H.J., Chen, S.X. Empirical likelihood confidence region for parameter in the error-in-variables models. J. Multivariate Anal., 84:101-115 (2003).
  • 7Cui, H.J., Kong, E.F. Empirical likelihood confidence regions for semi-parametric errors-in-variables models. Scan. J. of Statist., 33:153-168 (2006).
  • 8DiCicco, T., Hall, P., Romano, J. Empirical likelihood is Barterlett-correctable. Ann. of Statist., 19: 1053-1061 (1991).
  • 9Liang, H., Hardle, W., Carroll, R.J. Estimation in a semiparametric partialy linear error-in-variables model. Ann. of Statist., 27:1519-1535 (1999).
  • 10Liang, H. Asymptotic normality of parametric part in partially linear models with measurement error in the nonpararnetric part. J. Statist. Planning and Inference, 86:51-62 (2000).

同被引文献14

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部