期刊文献+

基于近似边界条件的三维机翼气动弹性数值模拟研究

Faster but Still Accurate Calculation of Wing Flutter Using Unsteady Transonic Euler Equations with Approximate Boundary Conditions
下载PDF
导出
摘要 物面边界条件采用一阶近似边界条件,计算网格采用静止的笛卡尔网格;通过求解Euler方程,得到三维机翼的非定常气动力,耦合机翼运动方程进行气动弹性的计算;流场和结构之间的数据通过无限平板样条法(IPS)进行交换。使用文中方法计算了三维气动弹性标准模型AGARD 445.6机翼的颤振边界,计算结果与实验结果吻合,表明该方法可以准确高效地求解三维机翼的气动弹性问题。 Aim. Our review of past researches at the beginning of this paper shows, we believe, that faster but still accurate calculation is much needed. Our faster calculation possesses three distinct advantages: (1) easy generation of grid, (2) no moving of grid, (3) less computing time and memory needed. The unsteady Euler flow solver is based on the finite volume method. Wall boundary conditions are implemented on non-moving mean wall positions; the first-order approximate boundary conditions are used in Euler equations on stationary Cartesian grids. For the structural displacements, a modal approach is applied. The solution of the flow and the structural dynamics are in time domain. IPS (infinite plate spline ) method is used for data interaction between CFD (computational fluid dynamics) and CSD (computational structural dynamics). A flutter analysis of the AGARD 445.6 wing is performed. The calculated flutter speed boundary and flutter frequency boundary, given respectively in Fig. 2 and Fig. 3 of the full paper, are in good agreement with experimental data and known calculated results.
作者 朱标 乔志德
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第3期289-293,共5页 Journal of Northwestern Polytechnical University
关键词 颤振 计算流体力学 有限体积法 EULER方程 笛卡尔网格 flutter(aerodynamics) computational fluid dynamics finite volume method Euler equations Cartesian grid
  • 相关文献

参考文献12

  • 1Lee-Rausch E, Batina J. Wing Flutter Boundary Prediction Using Unsteady Euler Aerodynamic Method. NASA-TM- 107732, 1993.
  • 2Alonso J J, Jameson A. Fully-Implicit Time-Marching Aeroelastic Solutions. AIAA-1994-0056.
  • 3Morton S A, Melville R B, Visbal M R. Accuracy and Coupling Issues of Aeroelastic Navier-Stokes Solutions on Deforming Meshes. AIAA-1997-1085.
  • 4Melville R B, Morton S A, Rizzetta D P. Implementation of a Fully-Implicit, Aeroelastic Navier-Stokes Solver. AIAA- 1997-2039, 1997.
  • 5Melville R B, Morton S A. Fully Implicit Aeroelasticity on Overset Grid Systems. AIAA-1998-0521.
  • 6Gordnier R, Melville R B. Transonic Flutter Simulations Using an Implicit Aeroelastic Solver. Journal of Aircraft, 2000, 37(5):872-879.
  • 7Liu F, Cai J, Zhu Y. Calculation of Wing Flutter by a Coupled Fluid-Structure Method. Journal of Aircraft, 2001,38 (2) :334-342.
  • 8Gao C, Luo S, Liu F. Calculation of Unsteady Transonic Flow by an Euler Method with Small Perturbation Boundary Conditions. AIAA-2003-1267.
  • 9Gao C, Luo S, Liu F, et al. Calculation of Airfoil Flutter by an Euler Method with Approximate Boundary Conditions. AIAA-2003-3830.
  • 10Jameson A, Schmidt W, Turkel E. Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA-1981-1259.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部