期刊文献+

基于多源信息融合的发动机转子早期故障识别 被引量:7

Applying Method of Multi-Source Information Fusion to Achieving Early Diagnosis of Aero-Engine Rotor Fault
下载PDF
导出
摘要 提出了将神经网络与D-S(Dempster-Shafer)证据理论相结合的发动机转子早期故障分级融合识别方法。文中对多源信息融合系统的基本结构、多源信息融合方法、早期故障融合识别过程等进行了分析和研究,并以发动机转子早期碰摩为对象进行了实验验证。结果表明,将神经网络与D-S证据理论相结合的早期故障分级融合识别方法,能够有效地提高发动机转子早期故障识别的快速性和有效性,利用神经网络的输出构造D-S融合推理中各焦元的基本概率赋值函数,避免了构造基本概率赋值函数时人为因素的影响,提高了故障识别精度。 Fig. 1 in the full paper shows the block diagram of our idea on how to achieve the early diagnosis of engine rotor fault. Section 2 proposes our information fusion method that combines neural network with the D-S (Dempster-Shafer) evidence theory to quickly diagnose early faults. In Fig. 2 of section 2, we give the block diagram of the process of the resolution of signals and their reconfiguration, such resolution and reconfiguration being the core of our method. In section 3, we did experiments on the experimental platform of an aero-engine rotor and measured the experimental data of six types of early fault, the measurement data being given in Table 1 and the diagnosis results being given in Table 2. On the basis of Tables 1 and 2, section 3 gives preliminarily three conclusions.
作者 王仲生 赵鹏
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第3期326-329,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(50675178 60472116)资助
关键词 飞机发动机 转子 神经网络 D-S证据理论 多源信息融合 早期故障识别 aircraft engines rotors neural networks D-S(Dempster-Shafer) evidence theory multi-source information fusion early fault diagnosis
  • 相关文献

参考文献8

  • 1Arun R, Anil J. Information Fusion in Biometrics. Pattern Recognition Letters, 2003,24:2115-2125.
  • 2敖凯军,鲁浩,吴剑秋.多传感器信息融合技术在发动机状态监控系统中的应用研究[J].传感器世界,2004,10(7):22-25. 被引量:8
  • 3傅建平 ,张培林 ,李国章 ,廖振强 .基于光谱信息融合的发动机磨损状态监测[J].军械工程学院学报,2005,17(1):14-16. 被引量:5
  • 4Otman B, Yuan X H. Engine Fault Diagnosis Based on Multi-Sensor Information Fusion Using Dempster-Shafer Evidence Theory. Information Fusion, 2007, 8(4): 379-386.
  • 5Nell A B, Allen M W, Bradley J R, Nathan A S. A New Approach to Higher-Level Information Fusion Using Associative Learning in Semantic Networks of Spiking Neurons. Information Fusion, 2007, 8(3): 227-251.
  • 6Shengli W, Sally M. Performance Prediction of Data Fusion for Information Retrieval. Information Processing &. Management, 2006,42(4) :899-915.
  • 7Mieezyslan M K, Jerzy A T, Jerzy W. Formalizing Classes of Information Fusion System. Information Fusion, 2004, 5 (3): 189-203.
  • 8王仲生,黎伟.发动机转子系统早期故障特征提取方法[J].推进技术,2006,27(2):137-140. 被引量:5

二级参考文献16

  • 1岑翼刚,岑丽辉,孙德宝.信号Lipschitz奇异性的计算与分析[J].计算机工程与应用,2004,40(18):35-36. 被引量:6
  • 2藤召胜,罗隆福,童调生.智能检测系统与数据融合[M].北京:机械工业出版社, 1999.12.
  • 3Philip L B. Shafe - Dempster reasoning with application to multisensor target identification system [ J]. Man and Cybernetics, 1987, 17:968 -977.
  • 4TimothyJRoss.模糊逻辑及其工程应用[M].北京:电子工业出版社,2001.73-109.
  • 5李洪志.信息融合技术[M].北京:国防工业出版社,2001.30-124.
  • 6黄文虎 夏松波 刘瑞岩 等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1997..
  • 7Lin H H,George M C.A model-based approach to robot fault diagnosis [ J].Knowledge-Based Systems,2005,18(4):225 ~233.
  • 8Kim K,Partos A G.Reducing the impact of false alarms in induction motor fault diagnosis [ J ].Journal of Dynamic Systems,Measurement,and Control,2003,125 (1):80 ~95.
  • 9Vania A,Pannacchi P.Experimental and theoretical application of fault identification measures of accuracy in rotating machine diagnostics[ J].Mechanics System,Signal Process,2004,18(2):329 ~ 352.
  • 10向阳,蔡悦斌,杨毓英,史习智.小波分析在信号奇异性探测及瞬态信号检测中的应用[J].振动与冲击,1997,16(4):23-30. 被引量:24

共引文献15

同被引文献83

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部