期刊文献+

纯铁药型罩材料的动态应力-应变行为 被引量:4

Dynamic stress-strain behavior of pure iron for shaped charge liners
原文传递
导出
摘要 利用Hopkinson杆技术对经930℃下退火2h的纯铁药型罩材料进行了冲击压缩实验,测定了该材料在不同应变率下的动态应力-应变关系.借助光学显微镜对变形后纯铁的组织进行了观察,研究了在不同应变率下变形过程中纯铁的组织演变和动态应力-应变行为.研究表明:在650~3850s-1的应变率范围内,纯铁药型罩材料有显著的孪生变形,发生了明显的应变强化和应变率强化效应,且最大应变也随应变率的提高而增加;在高应变率冲击下,孪生和滑移是纯铁的主要塑性变形机制,也是纯铁高应变率增强增塑的主要机制. The shock compression experiments of pure iron for shaped charge liners after annealing at 930℃ for 2 h were carried out with the split Hopkinson pressure bar apparatus, and its dynamic stress-strain relationships were measured at different strain rates. The microstructure of the deformed pure iron was examined by optical microscope. The microstructure evolution occurring at different strain rates and dynamic stress-strain behavior were investigated. It is shown that pure iron for shaped charge liners has the twinning structure after impact compression. The effect of work-hardening and strain rate strengthening for pure iron occurs at the strain rates of 650 to 3 850 s^-1, and the maximum strain also rises with increasing strain rate. Twinning and slipping are the plastic deformation mechanism of pure iron under the shock of high strain rate, which leads to the increase in both strength and plasticity at high strain rate for pure iron.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2009年第8期978-982,共5页 Journal of University of Science and Technology Beijing
关键词 纯铁 应力应变关系 孪生 冲击载荷 pure iron stress-strain relationship twinning shock load
  • 相关文献

参考文献13

  • 1Liang R Q, Akhtar S K. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast, 1999,15(9): 963.
  • 2Meyers M A. Dynamic Behavior of Materials. America.. John Wiley & Sons Incorporation, 1994.
  • 3Meyers M A, Chen Y J, Marquis F D S, et al. High-strain, high-strain-rate behavior of tantalum. Metall Mater Trans A, 1995, 26:2493.
  • 4李保成,赵家萍,张治民.冲击条件下纯铁晶粒尺寸增大和减小现象研究[J].弹箭与制导学报,2003,23(S4):216-218. 被引量:1
  • 5杨超,经福谦,张万甲,杨中正.冲击加载作用下铁和镍的高应变率变形[J].兵器材料科学与工程,1996,19(1):49-54. 被引量:3
  • 6杨超,经福谦,张万甲.冲击波压力和脉冲持续时间对铁和镍微结构的影响[J].兵器材料科学与工程,1996,19(3):38-44. 被引量:2
  • 7Pappu S, Murr L E. Shock deformation twinning in an iron explosively formed projectile. Mater Sci Eng A, 2000, 284(1/2) : 148.
  • 8杨卓越,丁雅莉,陈嘉砚.工业纯铁爆炸冲击波增塑效应研究[J].兵器材料科学与工程,2002,25(6):15-17. 被引量:3
  • 9Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading//Proceedings of the Physical Society. London, 1949:676.
  • 10AI-Mousawi M M, Reid S R, Denas W F. Use of the split Hopkinson pressure bar techniques in high rate materials testing. Mech Eng Sci, 1997, 211(4) :273.

二级参考文献12

  • 1慈明森.晶粒度对工业纯铁变形性能的影响[J].弹箭技术,1994,8(2):49-54. 被引量:3
  • 2Ma C H,1977年
  • 3杨超,兵器材料科学与工程
  • 4Murr L E. Residual microstructure - mechanical property relationships in shock- loaded metals and alloys[A]. Ed by Meyers M A,Murr L E. Shock Wave and High Strain Rate Phenomena in Metals[M]. New York Plenum Press,1981.607-673.
  • 5Meyers M A. Dynamic Behavior of Materials [M]. NY: 1994.146-447.
  • 6Worswick M J, et al. Microstructure and fracture during high strain forming of iron and tantalum[A]. Ed by Murr L E,et al. Shock Wave and High Strain Rate Phenomena in Materials [M]. Marcel Dekker:1992.87-95.
  • 7Belyakov A, et al. Substructural changes during hot deformation of an Fe-26Cr ferritic stainless steel[J]. Metallurgical Transaction A , 2000, 31: 21-27.
  • 8Lza-Mendia A. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions[J]. Metallurgical Transaction A, 1998,29A: 2975-2986.
  • 9Yang Y, et al. Localized superplastic behavior in α-titanium at high strain-rate[J]. Scripta Mettallurgica et Materialia, 1995,33: 219-224.
  • 10Meyers M A, et al. The attenuation of shock waves in nickel[J]. Material Science and Engineering,1983,59: 235-249.

共引文献9

同被引文献53

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部