期刊文献+

二维黎曼流形的Voronoi图生成算法 被引量:5

Algorithm for Creating Voronoi Diagrams for Two-Dimensional Riemannian Manifolds
下载PDF
导出
摘要 提出采用黎曼流形描述研究对象和基于坐标卡生成Voronoi图的算法思路.讨论了黎曼流形上研究Voronoi图的难点,并给出了存在定理,该定理说明了坐标卡上Voronoi图的存在条件.按照算法思路和存在定理,详细描述了二维黎曼流形上创建坐标卡的算法,并给出流形上转换函数和混合函数的定义方法.最后描述了基于坐标卡生成Voronoi图的算法,并给出了具体实例. This paper describes objects by Riemannian manifolds and creates Voronoi diagrams based on charts. Difficulties in studying Voronoi diagrams for Riemannian manifolds are discussed. A theorem in existence is given, which demonstrates the present condition of Voronoi diagrams for Riemannian manifolds in a chart. According to the idea and theorem, this paper describes the algorithm of creating charts for two-dimensional Riemannian manifolds and presents the definitions of transition and blend functions. Finally, the algorithm of creating Voronoi diagrams based on charts is given, and some examples are provided.
出处 《软件学报》 EI CSCD 北大核心 2009年第9期2407-2416,共10页 Journal of Software
基金 北京市自然科学基金No.4062010~~
关键词 二维黎曼流形 坐标卡 VORONOI图 DELAUNAY三角化 存在性 two-dimensional Riemannian manifold chart Voronoi diagram Delaunay triangulation existence
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Borouchaki Houman, Lang P, George P L. Parametric surface meshing using a combined advancing-front generalized Delaunay approach. Inter. J. for Num. Methods in Eng., 2000, 49(2): 233~259
  • 2[2]Shimada Kenji, Gossard D. Automatic triangular mesh generaion of trimmed parametric surfaces for finite element analysis. Computer Aided Geometric Design,1998, 15(2) : 199~222
  • 3[3]Cuilliere J C. An adaptive method for the automatic triangulation of 3D parametric surfaces. CAD, 1998, 30(1): 139~149
  • 4[4]Borouchaki Houman, George P L. Delaunay mesh generation governed by metric specifications, Part 1: algorithm. Finite Elements in Alanysis and Design, 1997, 25(1) : 61~83
  • 5[5]Chew L Paul. Constrained Delaunay triangulation. Algorithmca, 1989, 4(1) : 97~108
  • 6[6]Jonathan Richard Shewchuk. Delaunay refinement mesh generation: [PhD Dissertation]. Pittsburgh: Carnegie Mellon University, 1997
  • 7[7]Marc Vigo, Pla N. Computing directional constrained Delaunay triangulations. Computers and Graphics, 2000, 24(2) : 181~190

共引文献3

同被引文献41

  • 1蒋杰,方力,张鹤颖,窦文华.无线传感器网络最小连通覆盖集问题求解算法[J].软件学报,2006,17(2):175-184. 被引量:90
  • 2代晓巍,李树军,刘晓红.Voronoi图增点构造算法研究[J].测绘工程,2007,16(1):19-22. 被引量:7
  • 3Wang J,Sirisha M.Energy efficient coverage with variable sensing radii in wireless sensor networks[C]//Third IEEE International Conf on Wireless and Mobile Computing,Networking and Communications, 2007 : 61-65.
  • 4Zhang C,Zhang Y C.Detecting coverage boundary nodes in wireless sensor networks[C]//IEEE International Conf on Networking, Sensing and Control,2006 : 868-873.
  • 5Lee D-Y,Lam S S.Protocol design for dynamic Delaunay triangulation [C]//27th International Conf on Distributed Computing Systems, 2007 : 26-35.
  • 6Satyanarayana D,Rao S V.Local Delannay triangulation for mobile nodes[C]//First International Conf on Emerging Trends in Engineering and Technology,2008:282-287.
  • 7Evazi M,Mahani H.Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations[J]. Transport in Porous Media,2009,10:1573-1634.
  • 8Borut A.An efficient sweep-line Delaunay triangulation algorithm[J]. Computer Aided Design,2005,37 : 1027-1038.
  • 9周培德.计算几何[M].2版.北京:清华大学出版社,2005:146-180.
  • 10de Bertg M,van Kreveld M.Computational geometry algorithms and applications[M].邓俊辉,译.北京:清华大学出版社,2005:165-185.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部