期刊文献+

基于R-Tree的高效异常轨迹检测算法 被引量:15

Efficient Trajectory Outlier Detection Algorithm Based on R-Tree
下载PDF
导出
摘要 提出了异常轨迹检测算法,通过检测轨迹的局部异常程度来判断两条轨迹是否全局匹配,进而检测异常轨迹.算法要点如下:(1)为了有效地表示轨迹的局部特征,以k个连续轨迹点作为基本比较单元,提出一种计算两个基本比较单元间不匹配程度的距离函数,并在此基础上定义了局部匹配、全局匹配和异常轨迹的概念;(2)针对异常轨迹检测算法普遍存在计算代价高的不足,提出了一种基于R-Tree的异常轨迹检测算法,其优势在于利用R-Tree和轨迹间的距离特征矩阵找出所有可能匹配的基本比较单元对,然后再通过计算距离确定其是否局部匹配,从而消除大量不必要的距离计算.实验结果表明,该算法不仅具有很好的效率,而且检测出来的异常轨迹也具有实际意义. Recent progress on location aware services, GPS and wireless technologies has made it possible to real-timely track moving object and collect a large quarlity of trajectories data. As a result, how to effectively discover the knowledge from these trajectory data becomes an attractive and interesting research topic. The new trajectory outlier detection, proposed in this paper, can be used to determine whether two trajectories are globally matched by calculating the local matching degree between every base comparing unit pairs. Firstly, this paper proposes a new distance measure approach, which treats k consecutive points as a local comparing unit to depict the local features in terms of trajectories, via calculating the matching degree between trajectory segments. In addition, the critical concepts as local match, global match and trajectory outlier are presented. Secondly, based on this distance measure method, a new trajectory outlier detection algorithm based on R-tree is proposed to improve the efficiency of outlier detection. The main idea behind this algorithm is to eliminate unnecessary distance computation by R-tree and distance characteristic matrix between every trajectory pair. Extensive experiments demonstrate the efficiency and effectiveness of the proposed algorithm for trajectory outlier detection.
出处 《软件学报》 EI CSCD 北大核心 2009年第9期2426-2435,共10页 Journal of Software
基金 国家自然科学基金Nos.60773169,60473071 “十一五”国家科技支撑计划No.2006BAI05A01 四川省青年软件创新工程No.2007AA0032~~
关键词 异常轨迹检测 R树 基于平移的最小Hausdorff距离 全局匹配 局部匹配 trajectory outlier detection R-tree minimum Hausdorff distance under translation global match
  • 相关文献

参考文献10

  • 1Knorr EM, Ng RT, Tucakov V. Distance-Based outliers: Algorithms and applications. VLDB Journal, 2000,8(3):237-253.
  • 2Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000. 427-438.
  • 3Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: Identifying density-based local outliers. In: Chen WD, Jeffrey FN, Philip AB, eds. Proc. of the SIGMOD 2000. New York: ACM, 2000.93-104.
  • 4Papadimitriou S, Kitagawa H, Gibbons PB, Faloutsos C. LOCI: Fast outlier detection using the local correlation integral. In: Dayal U, Ramamritham K, Vijayaraman TM, eds. Proc. of the ICDE 2003. New York: IEEE Computer Society, 2003.315-326.
  • 5Aggarwal CC, Yu PS. Outlier detection for high dimensional data. In: Aref WG, ed. Proc. of the SIGMOD 2001. New York: ACM, 2001.37-46.
  • 6Lee J, Han J, Li X. Trajectory outlier detection: A partition-and-detect framework. In: Proe. of the ICDE 2008. New York: IEEE Computer Society, 2008. 140-149.
  • 7Chen J, Maylor K. Leung, Gao Y. Noisy logo recognition using line segment hausdorff distance. Pattern Recognition, 2003,36(4): 943-955.
  • 8Huttenlocher DP, Klanderman GA, Rucklidge WA. Comparing images using the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15(9):850-863.
  • 9Huttenlocher DP, Kcdem K, Sharir M. The upper envelope of voronoi surfaces and its applications. Discrete and Computational Geometry, 1993,9(1):267-291,.
  • 10Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In: Hector GM, ed. Proc. of the SIGMOD'90. New York: ACM, 1990. 322-331.

同被引文献138

引证文献15

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部