期刊文献+

Lithography-independent and large scale fabrication of a metal electrode nanogap 被引量:1

Lithography-independent and large scale fabrication of a metal electrode nanogap
原文传递
导出
摘要 A lithography-independent and wafer scale method to fabricate a metal nanogap structure is demonstrated. Polysilicon was first dry etched using photoresist (PR) as the etch mask patterned by photolithography. Then, by depositing conformal SiO2 on the polysilicon pattern, etching back SiO2 anisotropically in the perpendicular direction and removing the polysilicon with KOH, a sacrificial SiO2 spacer was obtained. Finally, after metal evaporation and lifting-off of the SiO2 spacer, an 82 nm metal-gap structure was achieved. The size of the nanogap is not determined by the photolithography, but by the thickness of the SiO2. The method reported in this paper is compatible with modern semiconductor technology and can be used in mass production. A lithography-independent and wafer scale method to fabricate a metal nanogap structure is demonstrated. Polysilicon was first dry etched using photoresist (PR) as the etch mask patterned by photolithography. Then, by depositing conformal SiO2 on the polysilicon pattern, etching back SiO2 anisotropically in the perpendicular direction and removing the polysilicon with KOH, a sacrificial SiO2 spacer was obtained. Finally, after metal evaporation and lifting-off of the SiO2 spacer, an 82 nm metal-gap structure was achieved. The size of the nanogap is not determined by the photolithography, but by the thickness of the SiO2. The method reported in this paper is compatible with modern semiconductor technology and can be used in mass production.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2009年第9期142-145,共4页 半导体学报(英文版)
基金 Project supported by the National High-Tech Research and Development Program of China (No.2008AA031402)
关键词 lithography-independent NANOGAP conformal deposition anisotropic etching lithography-independent nanogap conformal deposition anisotropic etching
  • 相关文献

参考文献12

  • 1Cabrini S, Barsotti R J, Carpentiero A, et al. Cross beam lithography (FIB + EBL) and dip pen nanolithography for nanoparticle conductivity measurements. J Vac Sci Technol B, 2005, 23: 2806.
  • 2Nagase T, Gamo K, Kubota T, et al. Direct fabrication of nanogap electrodes by focused ion beam etching. Thin Solid Films, 2006, 499:279.
  • 3Becerril H A, Woolley A T. DNA shadow nanolithography. Small, 2007, 3:1534.
  • 4Gupta R, Willis B G. Nanometer spaced electrodes using selective area atomic layer deposition. Appl Phys Lett, 2007, 90: 253102.
  • 5Ah C S, Yun Y J, Lee J S, et al. Fabrication of integrated nanogap electrodes by surface-catalyzed chemical deposition. Appl Phys Lett, 2006, 88:133116.
  • 6Hadeed F O, Durkana C. Controlled fabrication of 1-2 nm nanogaps by electromigration in gold and gold-palladium nanowires. Appl Phys Lett, 2007, 9 1: 123120.
  • 7Zhou C, Muller C J, Deshpande M R, et al. Microfabrication of a mechanically controllable break junction in silicon. Appl Phys Lett, 1995, 67:1160.
  • 8Chen F, Qing Q, Ren L, et al. Electrochemical approach for fabricating nanogap electrodes with well controllable separation. Appl Phys Lett, 2005, 86:123105.
  • 9Levin R M, Evans-Lutterodt K. The step coverage'of undoped and phosphorus-doped SiO2 glass films. J Vac Sci Technol B, 1983, 1(1): 54.
  • 10Rojas S, Gomarasca R, Zanotti L. Properties of borophosphosilicate glass films deposited by different chemical vapor deposition techniques. J Vac Sci Technol B, 1992, 10(2): 633.

同被引文献21

  • 1OVSHINSKY S R.Reversible electrical switching phenomenain disordered structures[J].Physical Review Letters,1968,21(20):1450-1453.
  • 2RAOUX S,SHELBY R M,JORDAN-SWEET J,et al.Phasechange materials and their application to random access memo-ry technology[J].Microelectronic Engineering,2008,85(12):2330-2333.
  • 3WONG H,RAOUX S,KIM S B,et al.Phase change memory[J].Proceedings of the IEEE,2010,98(12):2201-2227.
  • 4BURR G W,BREITWISCH M J,FRANCESCHINI M,etal.Phase change memory technology[J].Journal of VacuumScience and Technology:B,2010,28(2):223-262.
  • 5OH G H,PARK Y L,LEE J I,et al.Parallel multi-confined(PMC)cell technology for high density MLC PRAM[C]//Proceedings of 2009 Symposium on VLSI Technology.Hono-lulu,HI,USA,2009:220-221.
  • 6IM D H,LEE J I,CHO S L,et al.A unified 7.5 nm dash-type confined cell for high performance PRAM device[C]//Proceedings of 2008 IEEE International Electron DevicesMeeting.San Francisco,CA,USA,2008:1-4.
  • 7LIU J,YU B,ANANTRAM M.Scaling analysis of nano-wirephase-change memory[J].IEEE Electron Device Letters,2011,32(10):1340-1342.
  • 8JOHNSON C,OGURA S,RISEMAN J,et al.Method formaking submicron dimensions in structures using sidewallimage transfer techniques[J].IBM technical disclosure bulle-tin,1984,26(9):4587-4589.
  • 9ZHANG J Y,WANG X F,WANG X D,et al.Fully lithogra-phy independent fabrication of nanogap electrodes for lateralphase-change random access memory application[J].AppliedPhysics Letters,2010,96(21):213505-1-213505-3.
  • 10ZHANG J Y,WANG X F,WANG X D,et al.Selective andlithography-independent fabrication of 20 nm nano-gap elec-trodes and nano-channels for nanoelectrofluidics applications[J].Nanotechnology,2010,21(7):075303-1-075303-6.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部