期刊文献+

点到三维隐式曲线的正交投影算法

Algorithm for Orthogonal Projection onto 3D Implicit Curves
下载PDF
导出
摘要 针对点到三维(3D)隐式曲线的正交投影问题,提出了一种稳定的几何迭代算法。算法首先给出了基于二阶泰勒逼近的投影点追踪公式;通过将给定点向初始点处的曲率圆作投影,提出了基于曲率的步长控制策略;考虑到迭代过程中存在的误差,给出了基于梯度的迭代误差矫正方法;最后,给出了计算点到三维隐式曲线的正交投影的完整算法实现步骤。仿真结果表明,算法对初始值的敏感性较低,算法稳定、高效,收敛性良好。 A steady geometric iteration algorithm was proposed for projecting a point onto three-dimensional implicit curves. A tracing formula for projection point based second-order Taylor approximation method was proposed. By projecting the given point onto the curvature circle of the implicit curve at an initial point, a step controlling method based curvature was put forward. Considering the iteration error caused by the Taylor method, a correctional way based gradient was given. Finally, integrated computing method for projecting a point onto 3D implicit curves was summarized. Simulations indicate that sensitivity of the algorithm to the initial values is small and it has good robustness, efficiency and high convergence soeed.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第17期5388-5390,5395,共4页 Journal of System Simulation
基金 湖北省国际科技合作重点项目(HZW0050)
关键词 正交投影 隐曲线 曲率圆 步长 orthogonal projection implicit curves curvature circle step
  • 相关文献

参考文献9

  • 1Pegna J, Wolter F-E. Surface Curve Design by Orthogonal Projection of Space Curves onto Free-form Surfaces [J]. Journal of Mechanical Design (S1050-0472), 1996, 118(1): 45-52.
  • 2Hartmann Erich. On the Curvature of Curves and Surfaces Defined by Normalforms [J]. Computer Aided Geometric Design (S0167-8396), 1999, 16(5): 355-376.
  • 3Hu Shi-Min, Wallner Johannes. A Second Order Algorithm for Orthogonal Projection onto Curves and Surfaces [J]. Computer Aided Geometric Design (S0 167-8396), 2005, 22(3): 251-260.
  • 4Ma Y-L, Hewitt W T. Point Inversion and Projection for NURBS Curve and Surface: Control Polygon Approach [J]. Computer Aided Geometric Design (S0167-8396), 2003, 20(2): 79-99.
  • 5徐海银,李丹,李端铃,何顶新.隐曲线的线性和旋转插补[J].中国机械工程,2005,16(21):1886-1888. 被引量:2
  • 6Chen Xiao-Diao, Yong Jun-Hai, Zheng Guo-Qin, et al. Computing Minimum Distance between Two Implicit Algebraic Surfaces [J]. Computer-Aided Design (S0010-4485), 2006, 38( 10): 1053-1061.
  • 7Kim Ku-Jin. Minimum Distance between A Canal Surface and A Simple Surface [J]. Computer-Aided Design (80010-4485), 2003, 35(10): 871-879.
  • 8Lee Kwanhee, Seong Joon-Kyung, Kim Ku-Jin, et al. Minimum Distance between Two Sphere-Swept Surfaces [J]. Computer-Aided Design (S0010-4485), 2007, 39(6): 452-459.
  • 9Goldman Ron. Curvature Formulas for Implicit Curves and Surfaces [J]. Computer Aided Geometric Design (S0167-8396), 2005, 22(7): 632-658.

二级参考文献6

  • 1Bohez E,Makhanov S S,Sonthipermpoon K. Adaptive Nonlinear Tool Path Optimization for Five-axis Machining. International Journal of Production Research, 2000,38(21):4329~4343
  • 2Farouki R T, Manjunathaiah J, Yuan G F. Variable-feedrate CNC Interpolators for Constant Material Removal Rates Along Pythagorean-hodograph Curves. Computer-aided Design, 1998, 30(9):631~640
  • 3Farouki R T, Tsai Y F, Wilson C S.Physical Constraint on Feedrates and Feed Acceleration Along Curved Tool Paths. Computer-aided Geometric Design, 2000, 17(4):337~359
  • 4Yau H T, Kuo M J. NURBS Machining and Feed Rate Adjustment for High-speed Cutting of Complex Sculptured Surfaces. International Journal of Production Research, 2001,39(1): 21~41
  • 5Fleisig R V, Spence A D. A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-axis Machining. Computer-aided Design,2001, 33(1): 1~15
  • 6Sarma R, Rao A. Discretizors and Interpolators for Five-axis CNC Machines. ASME Journal of Manufacturing Science and Engineering, 2000, 122:191~197

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部